Skip to main content

Scaling Properties of Soft Matter in Equilibrium and Under Stationary Flow

  • Conference paper
  • First Online:
High Performance Computing (CARLA 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 697))

Included in the following conference series:

  • 868 Accesses

Abstract

A brief review is presented of the scaling of complex fluids, polymers and polyelectrolytes in solution and in confined geometry, in thermodynamical, structural and rheology properties using equilibrium and non-equilibrium dissipative particle dynamics simulations. All simulations were carried out on high performance computational facilities using parallelized algorithms, solved on computers using both central and graphical processing units. The scaling approach is shown to be a unifying axis around which general trends and basic knowledge can be gained, illustrated through a series of case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Gennes, P.G.: Scaling Concepts in Polymer Physics. Cornell University Press, New York (1979)

    Google Scholar 

  2. Cardy, J.: Scaling and Renormalization in Statistical Physics. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  3. Mandelbrot, B.: The Fractal Geometry of Nature. Freeman, New York (1983)

    Google Scholar 

  4. Frenkel, D., Smit, B.: Understanding Molecular Simulation. Academic Press, San Diego (2002)

    MATH  Google Scholar 

  5. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, New York (1989)

    MATH  Google Scholar 

  6. Brini, E., Algaer, E.A., Ganguly, P., Li, C., Rodríguez-Ropero, F., van der Vegt, N.F.A.: Soft Matter 9, 2108 (2013)

    Article  Google Scholar 

  7. Hoogerbrugge, P.J., Koelman, J.M.V.A.: Europhys. Lett. 19, 155 (1992)

    Article  Google Scholar 

  8. Español, P., Warren, P.: Europhys. Lett. 30, 191 (1995)

    Article  Google Scholar 

  9. Vishniakov, A., Talanga, D.S., Neimark, A.V.: J. Phys. Chem. Lett. 21, 3081 (2012)

    Article  Google Scholar 

  10. Groot, R.D.: Langmuir 16, 7493 (2000)

    Article  Google Scholar 

  11. Groot, R.D., Rabone, K.L.: Biophys. J. 81, 725 (2001)

    Article  Google Scholar 

  12. Gama Goicochea, A.: Competitive adsorption of surfactants and polymers on colloids by means of mesoscopic simulations. In: Klapp, J., Medina, A. (eds.) Experimental and Computational Fluid Mechanics. Environmental Science and Engineering, pp. 147–155. Springer, Cham (2014). doi:10.1007/978-3-319-00116-6_10

    Chapter  Google Scholar 

  13. Filipovic, N., Kojic, M., Tsuda, A.: Philos. Trans. A Math. Phys. Eng. Sci. 366, 3265 (2008)

    Article  Google Scholar 

  14. Murtola, T., Bunker, A., Vattulainen, I., Deserno, M., Karttunen, M.: Phys. Chem. Chem. Phys. 11, 1869–1892 (2009)

    Article  Google Scholar 

  15. Pastorino, C., Gama Goicochea, A.: Dissipative particle dynamics: a method to simulate soft matter systems in equilibrium and under flow. In: Klapp, J., Ruíz Chavarría, G., Medina Ovando, A., López Villa, A., Sigalotti, L. (eds.) Selected Topics of Computational and Experimental Fluid Mechanics. Environmental Science and Engineering, pp. 51–79. Springer, Cham (2015). doi:10.1007/978-3-319-11487-3_3

    Google Scholar 

  16. Moeendarbary, E., Ng, T.Y., Zangeneh, M.: Int. J. Appl. Mech. 02, 161 (2010)

    Article  Google Scholar 

  17. Groot, R.D.: J. Chem. Phys. 118, 11265–11277 (2003)

    Article  Google Scholar 

  18. Velázquez, M.E., Gama Goicochea, A., González-Melchor, M., Neria, M., Alejandre, J.: J. Chem. Phys. 124, 084104 (2006)

    Article  Google Scholar 

  19. Gama Goicochea, A.: Langmuir 23, 11656 (2007)

    Article  Google Scholar 

  20. Willemsen, S.M., Vlugt, T.J.H., Hoefsloot, H.C.J., Smit, B.: J. Comp. Phys. 147, 507 (1998)

    Article  Google Scholar 

  21. Murat, M., Grest, G.S.: Phys. Rev. Lett. 1989, 63 (1074)

    Google Scholar 

  22. Gama Goicochea, A., Alarcón, F.: J. Chem. Phys. 134, 014703 (2011)

    Article  Google Scholar 

  23. Goujon, F., Malfreyt, P., Tildesley, D.J.: Soft Matter 6, 3472 (2010)

    Article  Google Scholar 

  24. Groot, R.D., Warren, P.B.: J. Chem. Phys. 107, 4423 (1997)

    Article  Google Scholar 

  25. Widom, B.: J. Chem. Phys. 43, 3892–3897 (1965)

    Article  Google Scholar 

  26. Widom, B.: In: Domb, C., Green, M.S. (eds.) Phase Transitions and Critical Phenomena. Academic, New York (1972)

    Google Scholar 

  27. Binder, K.: Monte Carlo calculation of the surface tension for two- and three-dimensional lattice-gas models. Phys. Rev. A 25, 1699–1709 (1982)

    Article  Google Scholar 

  28. Goldenfeld, N.: Lectures on Phase Transitions and the Renormalization Group. Westview Press, New York (1992)

    MATH  Google Scholar 

  29. Mayoral, E., Gama Goicochea, A.: J. Chem. Phys. 138, 094703 (2013)

    Article  Google Scholar 

  30. Mayoral, E., Gama Goicochea, A.: Soft Matter 10, 9054 (2014)

    Article  Google Scholar 

  31. Le Guillou, J.C., Zinn-Justin, J.: Phys. Rev. B 21, 3976–3998 (1980)

    Article  MathSciNet  Google Scholar 

  32. Konop, A.J., Colby, R.H.: Macromolecules 32, 2803 (1999)

    Article  Google Scholar 

  33. Dobrynin, A.V., Colby, R.H., Rubinstein, M.: Macromolecules 28, 1859 (1995)

    Article  Google Scholar 

  34. Sim, A.Y.L., Lipfert, J., Herschlag, D., Doniach, S.: Phys. Rev. E 86, 021901-1 (2012)

    Article  Google Scholar 

  35. Alarcón, F., Pérez-Hernández, G., Pérez, E., Gama Goicochea, A.: Eur. Biophys. J. 42, 661 (2013)

    Article  Google Scholar 

  36. Wong, G.C.L., Pollack, L.: Ann. Rev. Phys. Chem. 61, 171 (2010)

    Article  Google Scholar 

  37. Hsiao, P.-Y., Luijten, E.: Phys. Rev. Lett. 97, 148301 (2006)

    Article  Google Scholar 

  38. Gama Goicochea, A., Briseño, M.: J. Coat. Technol. Res. 9, 279 (2012). doi:10.1007/s11998-011-9364-8

    Article  Google Scholar 

  39. Terrón-Mejía, K.A., López-Rendón, R., Gama Goicochea, A.: J. Phys. Condens. Matter 28, 425101 (2016). http://dx.doi.org/10.1088/0953-8984/28/42/425101

  40. Stigter, D.: Biophys. J. 69, 380 (1995)

    Article  Google Scholar 

  41. Visit: http://www.simes.uaemex-labs.org.mx/

  42. Klein, J., Kumacheva, E., Mahalu, D., Perahia, D., Fetters, L.J.: Nature 370, 634 (1994)

    Article  Google Scholar 

  43. Advincula, R., Brittain, W.J., Caster, K.C., Rühe, J. (eds.): Polymer Brushes. Wiley-VCH, Weinheim (2004)

    Google Scholar 

  44. Wang, X., Shah, A.A., Campbell, R.B., Wang, K.-T.: Appl. Phys. Lett. 97, 263703 (2010)

    Article  Google Scholar 

  45. Iyer, S., Gaikwad, R.M., Subba-Rao, V., Woodworth, C.D., Sokolov, I.: Nature Nanotech. 4, 389 (2009)

    Article  Google Scholar 

  46. Gama Goicochea, A., Alas Guardado, S.J.: Sci. Rep. 5, 13218 (2015). doi:10.1038/srep13218

    Article  Google Scholar 

  47. Israelachvili, J.N.: Intermolecular and Surface Forces, 3rd edn. Academic Press, San Diego (2011)

    Google Scholar 

  48. Milner, S.T., Witten, T.A., Cates, M.E.: Europhys. Lett. 5, 413 (1988)

    Article  Google Scholar 

  49. Macosko, C.W.: Rheology Principles, Measurements, and Applications. Wiley-VCH, Weinheim (1994)

    Google Scholar 

  50. Shuler, C.A., Janorkar, A.V., Hirt, D.E.: Polym. Eng. Sci. 44, 2247 (2004)

    Article  Google Scholar 

  51. Allen, C.M., Drauglis, E.: Wear 14, 363 (1969)

    Article  Google Scholar 

  52. Galuschko, A., Spirin, L., Kreer, T., Johner, A., Pastorino, C., Wittmer, J., Baschnagel, J.: Langmuir 26, 6418 (2010)

    Article  Google Scholar 

  53. Kreer, T., Balko, S.M.: ACS Macro Lett. 2, 944 (2013)

    Article  Google Scholar 

  54. Gama Goicochea, A., Mayoral, E., Klapp, J., Pastorino, C.: Soft Matter 10, 166 (2014)

    Article  Google Scholar 

  55. Gama Goicochea, A., López-Esparza, R., Balderas Altamirano, M.A., Rivera-Paz, E., Waldo, M.A., Pérez, E.: J. Mol. Liq. 219, 368–376 (2016)

    Article  Google Scholar 

  56. Rivera, E., Quiñones, Z., Waldo, M.A.: Private communication

    Google Scholar 

  57. Derjaguin, B.V.: Theory of Stability of Colloids and Thin Films. Plenum Publishing Corporation, New York (1979)

    Google Scholar 

  58. van Dongen, P.G.J., Ernst, M.H.: Phys. Rev. A 32, 670 (1985)

    Article  Google Scholar 

  59. des Cloizeaux, J.: J. Phys. (Paris) 36, 281 (1975)

    Article  Google Scholar 

  60. Gama Goicochea, A., Pérez, E.: Macromol. Chem. Phys. 216, 1076 (2015). doi:10.1002/macp.201400623

    Article  Google Scholar 

  61. Huang, K.: Statistical Mechanics. Wiley, New York (1987)

    MATH  Google Scholar 

  62. Balderas Altamirano, M.A., Gama Goicochea, A.: Polymer 52, 3846 (2011). doi:10.1016/jpolymer.2011.06.015

    Article  Google Scholar 

  63. Duplantier, B., Saleur, H.: Phys. Rev. Lett. 59, 539 (1987)

    Article  Google Scholar 

  64. Kremer, K., Lyklema, J.W.: Phys. Rev. Lett. 54, 267 (1985)

    Article  Google Scholar 

  65. Kolb, M.: Phys. Rev. Lett. 53, 1653 (1984)

    Article  Google Scholar 

  66. Witten, T.A.: Polymer solutions: a geometric introduction. In: Daoud, M., Williams, C.E. (eds.) Soft Matter Physics, pp. 261–288. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

Download references

Acknowledgments

The author wishes to thank his collaborators, with whom most of the results reported here were obtained, in particular: F. Alarcón, S. J. Alas Guardado, M. A. Balderas Altamirano, J. Barroso – Flores, R. Catarino Centeno, J. S. Hernández Fragoso, J. D. Hernández Velázquez, J. Klapp, R. López – Esparza, R. López – Rendón, E. Mayoral, S. Mejía – Rosales, C. Pastorino, R. Patiño Herrera, E. Pérez, G. Pérez – Hernández, Z. Quiñones, E. Rivera – Paz, K. A. Terrón – Mejía, J. Vallejo and M. A. Waldo. Educational discussions with E. Blokhuis and I. Sokolov are also gratefully acknowledged. For computational resources the author is indebted to ABACUS, where some calculations were run; to the high performance cluster Yoltla at UAM – Iztapalapa; to Universidad de Sonora for access to the Ocotillo cluster at their High Performance Computational Area; to the CNS supercomputing facilities at IPICyT, to the Olinka cluster at UAEM, and to the Laboratorio Nacional de Caracterización de Propiedades Fisicoquímicas y Estructura Molecular Supercómputo Universidad de Guanajuato. For technical support at the IFUASLP, J. Limón is also acknowledged. This work was supported in part by project Proinnova – CONACYT, through grant 231810.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Gama Goicochea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Gama Goicochea, A. (2017). Scaling Properties of Soft Matter in Equilibrium and Under Stationary Flow. In: Barrios Hernández, C., Gitler, I., Klapp, J. (eds) High Performance Computing. CARLA 2016. Communications in Computer and Information Science, vol 697. Springer, Cham. https://doi.org/10.1007/978-3-319-57972-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57972-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57971-9

  • Online ISBN: 978-3-319-57972-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics