Skip to main content

Imaging Neurologic Manifestations of Oncologic Disease

  • Chapter
  • First Online:
Cancer Neurology in Clinical Practice
  • 1817 Accesses

Abstract

Imaging plays a critical role during the diagnosis and management of metastatic disease to the central nervous system. When cancers metastasize to the central nervous system, there are often clinical manifestations due to direct mass effect on functional structures in the brain or spinal cord. Certain malignancies have propensity to metastasize to brain and may be clinically silent. Yet, the presence of CNS metastasis can significantly alter prognosis and impact treatment decision-making. Therefore, accurate diagnosis of CNS metastases is an important step in staging. While the imaging appearances of metastases can be highly variable depending on histological subtypes of primary tumors, there are important imaging features that can help with diagnosis and treatment planning. Furthermore, metastatic disease can initially present as a lesion(s) in the brain or spine sometimes mimicking primary tumors or non-neoplastic etiologies such as inflammation and infection. The imaging approach to CNS metastasis depends on both clinical symptoms and cancer types in order to maximize the sensitivity of lesion detection. In this chapter, a general approach to imaging of brain and spinal metastases is presented. Commonly encountered post-treatment imaging findings are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Davis FG, Dolecek TA, McCarthy BJ, Villano JL. Toward determining the lifetime occurrence of metastatic brain tumors estimated from 2007 United States cancer incidence data. Neuro Oncol. 2012;14(9):1171–7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sloan AE, Nock CJ, Einstein DB. Diagnosis and treatment of melanoma brain metastasis: a literature review. Cancer Control. 2009;16(3):248–55.

    Article  PubMed  Google Scholar 

  3. Delattre JY, Krol G, Thaler HT, Posner JB. Distribution of brain metastases. Arch Neurol. 1988;45(7):741–4.

    Article  CAS  PubMed  Google Scholar 

  4. Sze G, Milano E, Johnson C, Heier L. Detection of brain metastases: comparison of contrast-enhanced MR with unenhanced MR and enhanced CT. AJNR Am J Neuroradiol. 1990;11(4):785–91.

    CAS  PubMed  Google Scholar 

  5. Gaviani P, Mullins ME, Braga TA, Hedley-Whyte ET, Halpern EF, Schaefer PS, et al. Improved detection of metastatic melanoma by T2*-weighted imaging. AJNR Am J Neuroradiol. 2006;27(3):605–8.

    CAS  PubMed  Google Scholar 

  6. Atlas SW, Braffman BH, LoBrutto R, Elder DE, Herlyn D. Human malignant melanomas with varying degrees of melanin content in nude mice: MR imaging, histopathology, and electron paramagnetic resonance. J Comput Assist Tomogr. 1990;14(4):547–54.

    Article  CAS  PubMed  Google Scholar 

  7. Enochs WS, Petherick P, Bogdanova A, Mohr U, Weissleder R. Paramagnetic metal scavenging by melanin: MR imaging. Radiology. 1997;204(2):417–23.

    Article  CAS  PubMed  Google Scholar 

  8. Hayashi H, Okamoto I, Tanizaki J, Tanaka K, Okuda T, Kato A, et al. Cystic brain metastasis in non–small-cell lung cancer with ALK rearrangement. JCO. 2014;32(36):e122–4.

    Article  Google Scholar 

  9. Hwang TL, Valdivieso JG, Yang CH, Wolin MJ. Calcified brain metastasis. Neurosurgery. 1993;32(3):451–454; discussion 454.

    Google Scholar 

  10. Tashiro Y, Kondo A, Aoyama I, Nin K, Shimotake K, Tashiro H, et al. Calcified metastatic brain tumor. Neurosurgery. 1990;26(6):1065–70.

    Article  CAS  PubMed  Google Scholar 

  11. Deck MD, Messina AV, Sackett JF. Computed tomography in metastatic disease of the brain. Radiology. 1976;119(1):115–20.

    Article  CAS  PubMed  Google Scholar 

  12. Yamada N, Imakita S, Sakuma T, Takamiya M. Intracranial calcification on gradient-echo phase image: depiction of diamagnetic susceptibility. Radiology. 1996;198(1):171–8.

    Article  CAS  PubMed  Google Scholar 

  13. Collie DA, Brush JP, Lammie GA, Grant R, Kunkler I, Leonard R, et al. Imaging features of leptomeningeal metastases. Clin Radiol. 1999;54(11):765–71.

    Article  CAS  PubMed  Google Scholar 

  14. Pirzkall A, McGue C, Saraswathy S, Cha S, Liu R, Vandenberg S, et al. Tumor regrowth between surgery and initiation of adjuvant therapy in patients with newly diagnosed glioblastoma. Neuro Oncol. 2009;11(6):842–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hjorthaug K, Højbjerg JA, Knap MM, Tietze A, Haraldsen A, Zacho HD, et al. Accuracy of 18F-FDG PET-CT in triaging lung cancer patients with suspected brain metastases for MRI. Nucl Med Commun. 2015;36(11):1084–90.

    Article  CAS  PubMed  Google Scholar 

  16. Colosimo C, Ruscalleda J, Korves M, La Ferla R, Wool C, Pianezzola P, et al. Detection of intracranial metastases: a multicenter, intrapatient comparison of gadobenate dimeglumine-enhanced MRI with routinely used contrast agents at equal dosage. Invest Radiol. 2001;36(2):72–81.

    Article  CAS  PubMed  Google Scholar 

  17. Runge VM, Parker JR, Donovan M. Double-blind, efficacy evaluation of gadobenate dimeglumine, a gadolinium chelate with enhanced relaxivity, in malignant lesions of the brain. Invest Radiol. 2002;37(5):269–80.

    Article  PubMed  Google Scholar 

  18. Yuh WT, Tali ET, Nguyen HD, Simonson TM, Mayr NA, Fisher DJ. The effect of contrast dose, imaging time, and lesion size in the MR detection of intracerebral metastasis. AJNR Am J Neuroradiol. 1995;16(2):373–80.

    CAS  PubMed  Google Scholar 

  19. Ba-Ssalamah A, Nöbauer-Huhmann IM, Pinker K, Schibany N, Prokesch R, Mehrain S, et al. Effect of contrast dose and field strength in the magnetic resonance detection of brain metastases. Invest Radiol. 2003;38(7):415–22.

    PubMed  Google Scholar 

  20. Nöbauer-Huhmann I-M, Ba-Ssalamah A, Mlynarik V, Barth M, Schöggl A, Heimberger K, et al. Magnetic resonance imaging contrast enhancement of brain tumors at 3 tesla versus 1.5 tesla. Invest Radiol. 2002;37(3):114–9.

    Article  PubMed  Google Scholar 

  21. Hayashida Y, Hirai T, Morishita S, Kitajima M, Murakami R, Korogi Y, et al. Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity. AJNR Am J Neuroradiol. 2006;27(7):1419–25.

    CAS  PubMed  Google Scholar 

  22. Duygulu G, Ovali GY, Calli C, Kitis O, Yünten N, Akalin T, et al. Intracerebral metastasis showing restricted diffusion: correlation with histopathologic findings. Eur J Radiol. 2010;74(1):117–20.

    Article  CAS  PubMed  Google Scholar 

  23. Haldorsen IS, Espeland A, Larsson E-M. Central nervous system lymphoma: characteristic findings on traditional and advanced imaging. AJNR Am J Neuroradiol. 2011;32(6):984–92.

    Article  CAS  PubMed  Google Scholar 

  24. Nemeth AJ, Henson JW, Mullins ME, Gonzalez RG, Schaefer PW. Improved detection of skull metastasis with diffusion-weighted MR imaging. AJNR Am J Neuroradiol. 2007;28(6):1088–92.

    Article  CAS  PubMed  Google Scholar 

  25. Chavhan GB, Babyn PS, Thomas B, Shroff MM, Haacke EM. Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics. 2009;29(5):1433–49.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mittal S, Wu Z, Neelavalli J, Haacke EM. Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol. 2009;30(2):232–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bruhn H, Frahm J, Gyngell ML, Merboldt KD, Hänicke W, Sauter R, et al. Noninvasive differentiation of tumors with use of localized H-1 MR spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology. 1989;172(2):541–8.

    Article  CAS  PubMed  Google Scholar 

  28. Poptani H, Gupta RK, Roy R, Pandey R, Jain VK, Chhabra DK. Characterization of intracranial mass lesions with in vivo proton MR spectroscopy. AJNR Am J Neuroradiol. 1995;16(8):1593–603.

    CAS  PubMed  Google Scholar 

  29. Sijens PE, Knopp MV, Brunetti A, Wicklow K, Alfano B, Bachert P, et al. 1H MR spectroscopy in patients with metastatic brain tumors: a multicenter study. Magn Reson Med. 1995;33(6):818–26.

    Article  CAS  PubMed  Google Scholar 

  30. Law M. MR spectroscopy of brain tumors. Top Magn Reson Imaging. 2004;15(5):291–313.

    Article  PubMed  Google Scholar 

  31. García-Gómez JM, Luts J, Julià-Sapé M, Krooshof P, Tortajada S, Robledo JV, et al. Multiproject-multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy. MAGMA. 2009;22(1):5–18.

    Article  PubMed  Google Scholar 

  32. Groothuis DR. The blood-brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Neuro-Oncol. 2000;2(1):45–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Law M, Cha S, Knopp EA, Johnson G, Arnett J, Litt AW. High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology. 2002;222(3):715–21.

    Article  PubMed  Google Scholar 

  34. Young GS, Setayesh K. Spin-echo echo-planar perfusion MR imaging in the differential diagnosis of solitary enhancing brain lesions: distinguishing solitary metastases from primary glioma. AJNR Am J Neuroradiol. 2009;30(3):575–7.

    Article  CAS  PubMed  Google Scholar 

  35. Bertossi M, Virgintino D, Maiorano E, Occhiogrosso M, Roncali L. Ultrastructural and morphometric investigation of human brain capillaries in normal and peritumoral tissues. Ultrastruct Pathol. 1997;21(1):41–9.

    Article  CAS  PubMed  Google Scholar 

  36. Cha S. Perfusion MR imaging of brain tumors. Top Magn Reson Imaging. 2004;15(5):279–89.

    Article  PubMed  Google Scholar 

  37. Basser PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed. 1995;8(7–8):333–44.

    Article  CAS  PubMed  Google Scholar 

  38. Lu S, Ahn D, Johnson G, Cha S. Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors. AJNR Am J Neuroradiol. 2003;24(5):937–41.

    PubMed  Google Scholar 

  39. Tsuchiya K, Fujikawa A, Nakajima M, Honya K. Differentiation between solitary brain metastasis and high-grade glioma by diffusion tensor imaging. Br J Radiol. 2005;78(930):533–7.

    Article  CAS  PubMed  Google Scholar 

  40. Lu S, Ahn D, Johnson G, Law M, Zagzag D, Grossman RI. Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: introduction of the tumor infiltration index. Radiology. 2004;232(1):221–8.

    Article  PubMed  Google Scholar 

  41. Jones TL, Byrnes TJ, Yang G, Howe FA, Bell BA, Barrick TR. Brain tumor classification using the diffusion tensor image segmentation (D-SEG) technique. Neuro-Oncol. 2015;17(3):466–76.

    PubMed  Google Scholar 

  42. Yang G, Jones TL, Howe FA, Barrick TR. Morphometric model for discrimination between glioblastoma multiforme and solitary metastasis using three-dimensional shape analysis. Magn Reson Med. 2016;75(6):2505–16.

    Article  PubMed  Google Scholar 

  43. Blanchet L, Krooshof PWT, Postma GJ, Idema AJ, Goraj B, Heerschap A, et al. Discrimination between metastasis and glioblastoma multiforme based on morphometric analysis of MR images. AJNR Am J Neuroradiol. 2011;32(1):67–73.

    CAS  PubMed  Google Scholar 

  44. Albert FK, Forsting M, Sartor K, Adams HP, Kunze S. Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery. 1994;34(1):45–60–61.

    Google Scholar 

  45. Forsting M, Albert FK, Kunze S, Adams HP, Zenner D, Sartor K. Extirpation of glioblastomas: MR and CT follow-up of residual tumor and regrowth patterns. AJNR Am J Neuroradiol. 1993;14(1):77–87.

    CAS  PubMed  Google Scholar 

  46. Hartmann M, Jansen O, Heiland S, Sommer C, Münkel K, Sartor K. Restricted diffusion within ring enhancement is not pathognomonic for brain abscess. AJNR Am J Neuroradiol. 2001;22(9):1738–42.

    CAS  PubMed  Google Scholar 

  47. Gaensler EH, Dillon WP, Edwards MS, Larson DA, Rosenau W, Wilson CB. Radiation-induced telangiectasia in the brain simulates cryptic vascular malformations at MR imaging. Radiology. 1994;193(3):629–36.

    Article  CAS  PubMed  Google Scholar 

  48. Leeman JE, Clump DA, Flickinger JC, Mintz AH, Burton SA, Heron DE. Extent of perilesional edema differentiates radionecrosis from tumor recurrence following stereotactic radiosurgery for brain metastases. Neuro-Oncol. 2013;15(12):1732–8.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zach L, Guez D, Last D, Daniels D, Grober Y, Nissim O, et al. Delayed contrast extravasation MRI: a new paradigm in neuro-oncology. Neuro-Oncol. 2015;17(3):457–65.

    Article  CAS  PubMed  Google Scholar 

  50. Larroza A, Moratal D, Paredes-Sánchez A, Soria-Olivas E, Chust ML, Arribas LA, et al. Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in MRI. J Magn Reson Imaging. 2015;42(5):1362–8.

    Article  PubMed  Google Scholar 

  51. Kang TW, Kim ST, Byun HS, Jeon P, Kim K, Kim H, et al. Morphological and functional MRI, MRS, perfusion and diffusion changes after radiosurgery of brain metastasis. Eur J Radiol. 2009;72(3):370–80.

    Article  PubMed  Google Scholar 

  52. Asao C, Korogi Y, Kitajima M, Hirai T, Baba Y, Makino K, et al. Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am J Neuroradiol. 2005;26(6):1455–60.

    PubMed  Google Scholar 

  53. Essig M, Waschkies M, Wenz F, Debus J, Hentrich HR, Knopp MV. Assessment of brain metastases with dynamic susceptibility-weighted contrast-enhanced MR imaging: initial results. Radiology. 2003;228(1):193–9.

    Article  PubMed  Google Scholar 

  54. Graves EE, Nelson SJ, Vigneron DB, Verhey L, McDermott M, Larson D, et al. Serial proton MR spectroscopic imaging of recurrent malignant gliomas after gamma knife radiosurgery. AJNR Am J Neuroradiol. 2001;22(4):613–24.

    CAS  PubMed  Google Scholar 

  55. Schlemmer HP, Bachert P, Herfarth KK, Zuna I, Debus J, van Kaick G. Proton MR spectroscopic evaluation of suspicious brain lesions after stereotactic radiotherapy. AJNR Am J Neuroradiol. 2001;22(7):1316–24.

    CAS  PubMed  Google Scholar 

  56. Griffeth LK, Rich KM, Dehdashti F, Simpson JR, Fusselman MJ, McGuire AH, et al. Brain metastases from non-central nervous system tumors: evaluation with PET. Radiology. 1993;186(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  57. Rohren EM, Provenzale JM, Barboriak DP, Coleman RE. Screening for cerebral metastases with FDG PET in patients undergoing whole-body staging of non-central nervous system malignancy. Radiology. 2003;226(1):181–7.

    Article  PubMed  Google Scholar 

  58. Cicone F, Minniti G, Romano A, Papa A, Scaringi C, Tavanti F, et al. Accuracy of F-DOPA PET and perfusion-MRI for differentiating radionecrotic from progressive brain metastases after radiosurgery. Eur J Nucl Med Mol Imaging. 2015;42(1):103–11.

    Article  CAS  PubMed  Google Scholar 

  59. Lin NU, Lee EQ, Aoyama H, Barani IJ, Barboriak DP, Baumert BG, et al. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol. 2015;16(6):e270–8.

    Article  PubMed  Google Scholar 

  60. Schiff D, O’Neill BP, Suman VJ. Spinal epidural metastasis as the initial manifestation of malignancy: clinical features and diagnostic approach. Neurology. 1997;49(2):452–6.

    Article  CAS  PubMed  Google Scholar 

  61. Yu C-W, Hsu C-Y, Shih TT-F, Chen B-B, Fu C-J. Vertebral osteonecrosis: MR imaging findings and related changes on adjacent levels. AJNR Am J Neuroradiol. 2007;28(1):42–7.

    PubMed  Google Scholar 

  62. Baur A, Stäbler A, Arbogast S, Duerr HR, Bartl R, Reiser M. Acute osteoporotic and neoplastic vertebral compression fractures: fluid sign at MR imaging. Radiology. 2002;225(3):730–5.

    Article  PubMed  Google Scholar 

  63. Theodorou DJ. The intravertebral vacuum cleft sign. Radiology. 2001;221(3):787–8.

    Article  CAS  PubMed  Google Scholar 

  64. Yuh WT, Zachar CK, Barloon TJ, Sato Y, Sickels WJ, Hawes DR. Vertebral compression fractures: distinction between benign and malignant causes with MR imaging. Radiology. 1989;172(1):215–8.

    Article  CAS  PubMed  Google Scholar 

  65. Cuénod CA, Laredo JD, Chevret S, Hamze B, Naouri JF, Chapaux X, et al. Acute vertebral collapse due to osteoporosis or malignancy: appearance on unenhanced and gadolinium-enhanced MR images. Radiology. 1996;199(2):541–9.

    Article  PubMed  Google Scholar 

  66. Zhou XJ, Leeds NE, McKinnon GC, Kumar AJ. Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. AJNR Am J Neuroradiol. 2002;23(1):165–70.

    PubMed  Google Scholar 

  67. Chan JHM, Peh WCG, Tsui EYK, Chau LF, Cheung KK, Chan KB, et al. Acute vertebral body compression fractures: discrimination between benign and malignant causes using apparent diffusion coefficients. Br J Radiol. 2002;75(891):207–14.

    Article  CAS  PubMed  Google Scholar 

  68. Abanoz R, Hakyemez B, Parlak M. Diffusion-weighted imaging of acute vertebral compression: differential diagnosis of benign versus malignant pathologic fractures. Tani Girisim Radyol. 2003;9(2):176–83.

    PubMed  Google Scholar 

  69. Sung JK, Jee W-H, Jung J-Y, Choi M, Lee S-Y, Kim Y-H, et al. Differentiation of acute osteoporotic and malignant compression fractures of the spine: use of additive qualitative and quantitative axial diffusion-weighted MR imaging to conventional MR imaging at 3.0 T. Radiology. 2014;271(2):488–98.

    Article  PubMed  Google Scholar 

  70. Laredo JD, Lakhdari K, Bellaïche L, Hamze B, Janklewicz P, Tubiana JM. Acute vertebral collapse: CT findings in benign and malignant nontraumatic cases. Radiology. 1995;194(1):41–8.

    Article  CAS  PubMed  Google Scholar 

  71. Lee SS, Kim MK, Sym SJ, Kim SW, Kim WK, Kim S-B, et al. Intramedullary spinal cord metastases: a single-institution experience. J Neurooncol. 2007;84(1):85–9.

    Article  PubMed  Google Scholar 

  72. Schiff D, O’Neill BP. Intramedullary spinal cord metastases: clinical features and treatment outcome. Neurology. 1996;47(4):906–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the ARRS/ASNR Scholar Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Huang, R., Wen, P.Y. (2018). Imaging Neurologic Manifestations of Oncologic Disease. In: Schiff, D., Arrillaga, I., Wen, P. (eds) Cancer Neurology in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-57901-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57901-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57899-6

  • Online ISBN: 978-3-319-57901-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics