Skip to main content

Technical Aspects for the Evaluation of Circulating Nucleic Acids (CNAs): Circulating Tumor DNA (ctDNA) and Circulating MicroRNAs

  • Chapter
  • First Online:
Liquid Biopsy in Cancer Patients

Part of the book series: Current Clinical Pathology ((CCPATH))

Abstract

Circulating nucleic acids (CNAs), for example, circulating tumor DNA (ctDNA) and circulating microRNA (miRNA), represent promising biomarkers in several diseases including cancer. They can be isolated from many body fluids, such as blood, saliva, and urine. Also ascites, cerebrospinal fluids, and pleural effusion may be considered as a source of CNAs, but with several and intrinsic limitations. Therefore, blood withdrawal represents one of the best sources for CNAs due to the very simple and minimally invasive way of sampling. Moreover, it can be repeated at different time points, giving the opportunity for a real-time monitoring of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delgado PO, Alves BC, Gehrke FS, et al. Characterization of cell-free circulating DNA in plasma in patients with prostate cancer. Tumour Biol. 2013;34:983–6.

    Article  CAS  PubMed  Google Scholar 

  2. Hashad D, Sorour A, Ghazal A, Talaat I. Free circulating tumor DNA as a diagnostic marker for breast cancer. J Clin Lab Anal. 2012;26:467–72.

    Article  CAS  PubMed  Google Scholar 

  3. Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32(6):579–86. doi:10.1200/JCO.2012.45.2011. Epub 2014 Jan 21.

  4. Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6:224ra224.

    Article  Google Scholar 

  5. Umetani N, Kim J, Hiramatsu S, et al. Increased integrity of free circulating DNA in sera of patients with colorectal or periampullary cancer: direct quantitative PCR for ALU repeats. Clin Chem. 2006;52:1062–9.

    Article  CAS  PubMed  Google Scholar 

  6. Chan KC, Yeung SW, Lui WB, et al. Effects of preanalytical factors on the molecular size of cell-free DNA in blood. Clin Chem. 2005;51:781–4.

    Article  CAS  PubMed  Google Scholar 

  7. Swinkels DW, Wiegerinck E, Steegers EA, de Kok JB. Effects of blood-processing protocols on cell-free DNA quantification in plasma. Clin Chem. 2003;49:525–6.

    Article  CAS  PubMed  Google Scholar 

  8. Chiu RW, Poon LL, Lau TK, et al. Effects of blood-processing protocols on fetal and total DNA quantification in maternal plasma. Clin Chem. 2001;47:1607–13.

    CAS  PubMed  Google Scholar 

  9. Malapelle U, Pisapia P, Rocco D, Smeraglio R, di Spirito M, Bellevicine C, Troncone G. Next generation sequencing techniques in liquid biopsy: focus on non-small cell lung cancer patients. Transl Lung Cancer Res 2016;5(5):505–510.

    Google Scholar 

  10. Karachaliou N, Mayo-de las Casas C, Queralt C, et al. Association of EGFR L858R mutation in circulating free DNA with survival in the EURTAC trial. JAMA Oncol. 2015;1:149–57.

    Article  PubMed  Google Scholar 

  11. Malapelle U, Pisapia P, Rocco D, et al. Next generation sequencing techniques in liquid biopsy: focus on non-small cell lung cancer patients. Transl Lung Cancer Res. 2016;5:505–10.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sorber L, Zwaenepoel K, Deschoolmeester V, et al. A comparison of cell-free DNA isolation kits: isolation and quantification of cell-free DNA in plasma. J Mol Diagn. 2017;19:162–8.

    Article  CAS  PubMed  Google Scholar 

  13. Sonnenberg A, Marciniak JY, Rassenti L, et al. Rapid electrokinetic isolation of cancer-related circulating cell-free DNA directly from blood. Clin Chem. 2014;60:500–9.

    Article  CAS  PubMed  Google Scholar 

  14. Sonnenberg A, Marciniak JY, Skowronski EA, et al. Dielectrophoretic isolation and detection of cancer-related circulating cell-free DNA biomarkers from blood and plasma. Electrophoresis. 2014;35:1828–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Devonshire AS, Whale AS, Gutteridge A, et al. Towards standardisation of cell-free DNA measurement in plasma: controls for extraction efficiency, fragment size bias and quantification. Anal Bioanal Chem. 2014;406:6499–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bidard FC, Madic J, Mariani P, et al. Detection rate and prognostic value of circulating tumor cells and circulating tumor DNA in metastatic uveal melanoma. Int J Cancer. 2014;134:1207–13.

    Article  CAS  PubMed  Google Scholar 

  17. Spindler KL, Pallisgaard N, Vogelius I, Jakobsen A. Quantitative cell-free DNA, KRAS, and BRAF mutations in plasma from patients with metastatic colorectal cancer during treatment with cetuximab and irinotecan. Clin Cancer Res. 2012;18:1177–85.

    Article  CAS  PubMed  Google Scholar 

  18. Spindler KL, Pallisgaard N, Andersen RF, Jakobsen A. Changes in mutational status during third-line treatment for metastatic colorectal cancer – results of consecutive measurement of cell free DNA, KRAS and BRAF in the plasma. Int J Cancer. 2014;135:2215–22.

    Article  CAS  PubMed  Google Scholar 

  19. Taly V, Pekin D, Benhaim L, et al. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin Chem. 2013;59:1722–31.

    Article  CAS  PubMed  Google Scholar 

  20. Sorber L, Zwaenepoel K, Deschoolmeester V, et al. Circulating cell-free nucleic acids and platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients. Lung Cancer. 2016;107:100.

    Article  PubMed  Google Scholar 

  21. Newman AM, Bratman SV, To J, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20:548–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hruštincová A, Votavová H, Dostálová MM. Circulating MicroRNAs: methodological aspects in detection of these biomarkers. Folia Biol (Praha). 2015;61:203–18.

    Google Scholar 

  23. Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hunter MP, Ismail N, Zhang X, et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One. 2008;3:e3694.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fang C, Zhu DX, Dong HJ, et al. Serum microRNAs are promising novel biomarkers for diffuse large B cell lymphoma. Ann Hematol. 2012;91:553–9.

    Article  CAS  PubMed  Google Scholar 

  26. Kirschner MB, Kao SC, Edelman JJ, et al. Haemolysis during sample preparation alters microRNA content of plasma. PLoS One. 2011;6:e24145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cheng HH, Yi HS, Kim Y, et al. Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One. 2013;8:e64795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Monleau M, Bonnel S, Gostan T, et al. Comparison of different extraction techniques to profile microRNAs from human sera and peripheral blood mononuclear cells. BMC Genomics. 2014;15:395.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods. 2010;50:298–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xiang M, Zeng Y, Yang R, et al. U6 is not a suitable endogenous control for the quantification of circulating microRNAs. Biochem Biophys Res Commun. 2014;454:210–4.

    Article  CAS  PubMed  Google Scholar 

  31. Filková M, Aradi B, Senolt L, et al. Association of circulating miR-223 and miR-16 with disease activity in patients with early rheumatoid arthritis. Ann Rheum Dis. 2014;73:1898–904.

    Article  PubMed  Google Scholar 

  32. Chen X, Liang H, Guan D, et al. A combination of let-7d, let-7g and let-7i serves as a stable reference for normalization of serum microRNAs. PLoS One. 2013;8:e79652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ge Q, Zhou Y, Lu J, Bai Y, Xie X, Lu Z. miRNA in plasma exosome is stable under different storage conditions. Molecules. 2014;19(2):1568–75.

    Google Scholar 

  34. Zearo S, Kim E, Zhu Y, Zhao JT, Sidhu SB, Robinson BG, Soon PSh. MicroRNA-484 is more highly expressed in serum of early breast cancer patients compared to healthy volunteers. BMC Cancer 2014;14:200.

    Google Scholar 

  35. Steudemann C, Bauersachs S, Weber K, Wess G. Detection and comparison of microRNA expression in the serum of Doberman Pinschers with dilated cardiomyopathy and healthy controls. BMC Vet Res. 2013;9:12.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Blenkiron C, Askelund KJ, Shanbhag ST, et al. MicroRNAs in mesenteric lymph and plasma during acute pancreatitis. Ann Surg. 2014;260:341–7.

    Article  PubMed  Google Scholar 

  37. Creighton CJ, Reid JG, Gunaratne PH. Expression profiling of microRNAs by deep sequencing. Brief Bioinform. 2009;10:490–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Russo MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Castiglia, M., Perez, A., Serrano, M.J., Ciaccio, M., Bazan, V., Russo, A. (2017). Technical Aspects for the Evaluation of Circulating Nucleic Acids (CNAs): Circulating Tumor DNA (ctDNA) and Circulating MicroRNAs. In: Russo, A., Giordano, A., Rolfo, C. (eds) Liquid Biopsy in Cancer Patients. Current Clinical Pathology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-55661-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55661-1_6

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-55659-8

  • Online ISBN: 978-3-319-55661-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics