Skip to main content

The Edaphism: Gypsum, Dolomite and Serpentine Flora and Vegetation

  • Chapter
  • First Online:

Part of the book series: Plant and Vegetation ((PAVE,volume 13))

Abstract

The relationship between plants and the different types of rocks has been known at least since the sixteenth century when Caesalpino linked the existence of the endemic Alyssum bertolonii to the Italian serpentines. In the seventeenth century, Spanish botanists Asso and Cavanilles also point out the same soil-plant connection in the Iberian gypsum, as later did Linnaeus creating the genus Gypsophila. The study of this edaphic phenomenon is part of Geobotany or even, as a discipline within it, Geoecology. The term “edaphism” has been used by European authors almost as a synonym of Geoecology, although it has also been employed as a contraction of “edaphic endemism”. Be it as it may, the best expression of the soil-plant link is the high percentage of endemic plant species that appear on special rocks like serpentines, gypsum and dolomite. These three types of substrates make plants face nutritional imbalances, so that soil chemistry is important to understand them. From this point of view, the main feature that can serve as a link between these 3 types of edaphisms is the Ca/Mg ratio, well above unity in the gypsum soil and near that value, or even below, in dolomites and serpentines. Of the three, serpentines are undoubtedly the most recurrent motif of the botanical-ecological research; several monographs worldwide are evidence of this. At the other extreme are dolomites, of which the research might almost be described nowadays as anecdotal. The research on gypsum has grown enormously in recent years. The most recent advances in edaphism research show that not only chemical (nutritional) factors in the soil help to understand it, but also that the physical factors and biotic interactions are key elements and, especially, those concerning the roots. The roots, associated with different symbiotic organisms, must face not only the inherent chemical imbalances in these soils, but also meet the challenge of growing and spreading in them as well as getting to minimize water stress. The different plant strategies to address these limitations also make these edaphic endemism noteworthy from the ecophysiological point of view. Thus, metal hyperaccumulating plants have great value in both phytomining and phytoremediation. While many serpentine plants are heavy metals hyperaccumulators, some gypsophytes do not only accumulate significant amounts of Ca and Sr, but are able to extract the gypsum structural H2O molecules, which is why it is legitimate to speak of “biological mining of water”. Moreover, the very special physicochemical conditions of these ecosystems make them particularly interesting as terrestrial analogues (a field site, which bears an analogy or similarity in some way to other planetary bodies of the solar system). The Iberian Peninsula is especially rich in these 3 types of substrates as evidenced by the 25 forest types, the over 56 different types of scrublands and 18 types of grasslands described. Not to mention the cryptogamic crust and microbial communities associated with these rocks, to which some of the oldest organisms on the planet, as Chrooccocidiopsis, belong.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguiar C, Monteiro-Henriques T, Sánchez-Mata D (2013) New contributions on flora and vegetation of northeastern Portugal ultramafic outcrops. Lazaroa 34:141–150

    Article  Google Scholar 

  • Aguilar J, Simón M, Fernández J, Gil C, Marañés A (1986) Mapa de Suelos de Aldeire a escala 1:100.000. P. LUCDEME. Revisatlas, Madrid

    Google Scholar 

  • Aguilar J, Simón M, Fernández J, Garcia I, Milán JM (1987) Mapa de Suelos de Fiñana a escala 1:100.000. P. LUCDEME. Revisatlas, Madrid

    Google Scholar 

  • Alford ÉR, Pilon-Smits EA, Paschke MW (2010) Metallophytes-a view from the rhizosphere. Plant Soil 337(1–2):33–50

    Article  CAS  Google Scholar 

  • Alguacil MM, Roldan A, Torres MP (2009a) Complexity of semiarid gypsophilous shrub communities mediates the AMF biodiversity at the plant species level. Microb Ecol 57(4):718–727

    Article  CAS  PubMed  Google Scholar 

  • Alguacil MM, Roldán A, Torres MP (2009b) Assessing the diversity of AM fungi in arid gypsophilous plant communities. Environ Microbiol 11(10):2649–2659

    Article  CAS  PubMed  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  PubMed  Google Scholar 

  • Alvarado JJ, Ruiz JM, López-Cantarero I, Molero J, Romero L (2000) Nitrogen metabolism in five plant species characteristic of gypsiferous soils. J Plant Physiol 156(5/6):612–616

    Article  CAS  Google Scholar 

  • Anacker BL (2014) The nature of serpentine endemism. Am J Bot 101(2):219–224

    Article  PubMed  Google Scholar 

  • Anacker BL, Strauss SY (2014) The geography and ecology of plant speciation: range overlap and niche divergence in sister species. Proc R Soc Lond B Biol Sci 281(1778):20132980

    Article  Google Scholar 

  • Anacker BL, Whittall JB, Goldberg EE, Harrison SP (2011) Origins and consequences of serpentine endemism in the California flora. Evolution 65(2):365–376

    Article  PubMed  Google Scholar 

  • Anderson JPE (1982) Soil respiration. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. American Society of Agronomy, Soil Science Society of America, Madison, pp 831–871

    Google Scholar 

  • Asensi A, Rivas Martínez S (1976) Contribución al conocimiento fitosociológico de los pinsapares de la Serranía de Ronda. Anales del Instituto Botánico Cavanilles 32:1245–1429

    Google Scholar 

  • Asensi A, Aguiar C, Sánchez-Mata D, Monteiro-Henriques T (eds) (2011) Flora and vegetation of Iberian ultramafics Excursion guide. 7th international conference on serpentine ecology. Instituto Politécnico de Bragança. Universidade de Coimbra, Braganza

    Google Scholar 

  • Aznar JM, Poch RM, Badía D (2013) Soil catena along gypseous woodland in the middle Ebro Basin: soil properties and micromorphology relationships. Span J Soil Sci 3(1):28–44. doi:10.3232/SJSS.2013.V3.N1.02

    Google Scholar 

  • Azua-Bustos A, Urrejola C, Vicuña R (2012) Life at the dry edge: microorganisms of the Atacama Desert. FEBS Lett 586(18):2939–2945

    Article  CAS  PubMed  Google Scholar 

  • Bahl J, Lau MC, Smith GJ, Vijaykrishna D, Cary SC, Lacap DC, Lee CK, Papke RT, Warren-Rhodes KA, Wong FKY, McKay CP, Pointing SB (2011) Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun 2:163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baker HG (1986) Patterns of plant invasion in North America. In: Mooney HA, Drake JA (eds) Ecology of biological invasions of North America and Hawaii. Springer, New York, pp 44–57

    Chapter  Google Scholar 

  • Ballesteros M, Cañadas EM, Foronda A, Fernández-Ordoño E, Peñas de Giles J, Lorite J (2012) Vegetation recovery of gypsum quarries: short-term sowing response to different soil treatments. Appl Veg Sci 15(2):187–197

    Article  Google Scholar 

  • Ballesteros M, Cañadas EM, Foronda A, Peñas de Giles J, Valle F, Lorite J (2014) Central role of bedding materials for gypsum-quarry restoration: an experimental planting of gypsophile species. Ecol Eng 70:470–476

    Article  Google Scholar 

  • Bañares A, Blanca G, Güemes J, Moreno JC, Ortiz S (2003) Atlas y Libro Rojo de la Flora Vascular Amenazada de España. DGCN, Madrid

    Google Scholar 

  • Banerjee M, Debkumari Sharma B (2005) Mars terraformation: role of antarctic cyanobacterial cryptoendoliths. Nat Acad Sci Lett 28(5–6):155–160

    CAS  Google Scholar 

  • Becquer T, Quantin C, Sicot M, Boudot JP (2003) Chromium availability in ultramafic soils from New Caledonia. Sci Total Environ 301:251–261

    Article  CAS  PubMed  Google Scholar 

  • Bellot F (1952) Propuesta de un nuevo orden para el círculo de vegetación mediterráneo: Gypsophiletalia ord. nov. incluible en la clase Ononido-Rosmarinetea Braun-Blanquet. Trab Jard Bot Santiago de Compostela 5:3–14

    Google Scholar 

  • Boira H, Costa M, Batlle J, Soriano P, Loidi J, Samo A (2002) Numerical revision of syntaxonomy and ecological characteristics of vegetation on gypsum substrates in Spain (C. and SE.) Ecologia Mediterranea 28:39–53

    Google Scholar 

  • Boison G, Mergel A, Jolkver H, Bothe H (2004) Bacterial life and dinitrogen fixation at a gypsum rock. Appl Environ Microbiol 70(12):7070–7077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boissier PE (1839–1845) Voyage botanique dans le midi de l’Espagne pendant l’année 1837, vol 2. Gide et Cie., librairies-éditeurs, Paris

    Google Scholar 

  • Bolukbasi A, Kurt L, Palacio S (2016) Unravelling the mechanisms for plant survival on gypsum soils: an analysis of the chemical composition of gypsum plants from Turkey. Plant Biol 18:271–279

    Article  CAS  PubMed  Google Scholar 

  • Borer CH, Hamby MN, Hutchinson LH (2012) Plant tolerance of a high calcium environment via foliar partitioning and sequestration. J Arid Environ 85:128–131

    Article  Google Scholar 

  • Boscaiu M, Bautista I, Lidón A, Llinares J, Lull C, Donat P, Mayoral O, Vicente O (2013) Environmental-dependent proline accumulation in plants living on gypsum soils. Acta Physiol Plant 35:2193–2204

    Article  CAS  Google Scholar 

  • Boukhris A, Laffont-Schwob I, Rabier J, Salducci MD, El Kadri L, Tonetto A, Tatoni T, Chaieb M (2015) Changes in mesophyll element distribution and phytometabolite contents involved in fluoride tolerance of the arid gypsum-tolerant plant species Atractylis serratuloides Sieber ex Cass. (Asteraceae). Environ Sci Pollut Res 22(10):7918–7929

    Article  CAS  Google Scholar 

  • Boyd RS, Jaffre T (2001) Phytoenrichment of soil Ni content by Sebertia acuminata in New Caledonia and the concept of elemental allelopathy. S Afr J Sci 97:535–538

    CAS  Google Scholar 

  • Boyd RS, Martens SN (1998) The significance of metal hyperaccumulation for biotic interactions. Chemoecology 8:1–7

    Article  CAS  Google Scholar 

  • Bradshaw HD (2005) Mutations in CAX1 produce phenotypes characteristic of plants tolerant to serpentine soils. New Phytol 167:81–88

    Article  CAS  PubMed  Google Scholar 

  • Brady KU, Kuckeberg AR, Bradshaw HD Jr (2005) Evolutionary ecology of plant adaptation to serpentine soil. Annu Rev Ecol Evol Syst 36:243–266

    Article  Google Scholar 

  • Branco S (2010) Serpentine soils promote ectomycorrhizal fungal diversity. Mol Ecol 19:5566–5576

    Article  PubMed  Google Scholar 

  • Branco S, Ree RH (2010) Serpentine soils do not limit mycorrhizal fungal diversity. PLoS One 5:e11757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Braun-Blanquet J (1932) Plant sociology: the study of plant communities. McGraw-Hill, New York

    Google Scholar 

  • Bromhan L, Bennett TH (2014) Salt tolerance evolves more frequently in C4 grass lineages. J Evol Biol 27:653–659

    Article  CAS  Google Scholar 

  • Brooks RR, Radford CC (1978) Nickel accumulation by European species of the genus Alyssum. Proc R Soc Lond B Biol Sci 200(1139):217–224

    Article  CAS  Google Scholar 

  • Buján E (2013) Elemental composition of phytoliths in modern plants (Ericaceae). Quat Int 287:114–120

    Article  Google Scholar 

  • Campillo N, Martín F, Simón M, Iriarte A (2000) Cuantificación de la degradacición de las propiedades de los suelos en explotaciones mineras a cielo abierto. Edafología 7-3:31–42

    Google Scholar 

  • Cañadas EM, Ballesteros M, Valle F, Lorite J (2014) Does gypsum influence seed germination? Turk J Bot 38:141–147

    Article  Google Scholar 

  • Cañadas EM, Ballesteros M, Foronda A, Navarro FB, Jiménez MN, Lorite J (2015) Enhancing seedling production of native species to restore gypsum habitats. J Environ Manag 163:109–114

    Article  CAS  Google Scholar 

  • Cannon HL (1957) Description of indicator plants and methods of botanical prospecting for uranium deposits on the Colorado Plateau (No. 1030-M). US Government Printing Office

    Google Scholar 

  • Cannon HL (1960) Botanical prospecting for ore deposits. Science 132:591–598

    Article  CAS  PubMed  Google Scholar 

  • Cannon HL (1971) The use of plant indicators in ground water surveys, geologic mapping, and mineral prospecting. Taxon 20:227–256

    Article  CAS  Google Scholar 

  • Cano E, Fuentes AG, Torres JA, Cano-Ortiz A, Montilla RJ (2006) Una nueva asociación de matorral gipsófilo para el Sur de España (Provincia Bética). Lagascalia 26(1):39–50

    Google Scholar 

  • Castillejo JM, Castelló R (2010) Influence of the application rate of an organic amendment (municipal solid waste [MSW] compost) on gypsum quarry rehabilitation in semiarid environments. Arid Land Res Manag 24:344–364

    Article  Google Scholar 

  • Center A (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Google Scholar 

  • Chiarucci A (2003) Vegetation ecology and conservation on Tuscan ultramafic soils. Bot Rev 69:252–268

    Article  Google Scholar 

  • Chiarucci A, Robinson BH, Bonini I, Petit D, Brooks RR, De Dominicis V (1998) Vegetation of tuscan ultramafic soils in relation to edaphic and physical factors. Folia Geobot 33(2):113–131

    Article  Google Scholar 

  • Chiarucci A, Maccherini S, Bonini I, De Dominicis V (1999) Effects of nutrient addition on community productivity and structure of serpentine vegetation. Plant Biol 1:121–126

    Article  CAS  Google Scholar 

  • Cockell CS, Schuerger AC, Billi D, Friedmann EI, Panitz C (2005) Effects of a simulated martian UV flux on the cyanobacterium, Chroococcidiopsis sp. 029. Astrobiology 5(2):127–140

    Article  CAS  PubMed  Google Scholar 

  • Costa Tenorio M, Morla C, Sainz H (1986) Estudio fitoecológico de los sabinares albares (Juniperus thurifera L.) de la provincia de Teruel. Teruel 76:51–134

    Google Scholar 

  • Dana E, Mota JF (2006) Vegetation and soil recovery on gypsum outcrops in semi-arid Spain. J Arid Environ 65:444–459

    Article  Google Scholar 

  • Daniells IG (2012) Hardsetting soils: a review. Soil Res 50:349–359

    Article  Google Scholar 

  • Davis MA, Boyd RS, Cane JH (2001) Hostswitching does not circumvent the Ni-based defense of the Ni hyperaccumulator Streptanthus polygaloides (Brassicaceae). S Afr J Sci 97:554–557

    CAS  Google Scholar 

  • de Andalucía J (2014) Propuesta de Parque Nacional de Sierra de las Nieves. http://www.juntadeandalucia.es/medioambiente/site/portalweb/menuitem.220de8226575045b25f09a105510e1ca/?vgnextoid=a5a8d213b2d98410VgnVCM1000001325e50aRCRD&vgnextchannel=39fd545f021f4310VgnVCM1000001325e50aRCRD

  • Desir G (2001) Erosión hídrica de terrenos yesíferos en el sector central de la depresión del Ebro. Consejo de Protección de la Naturaleza de Aragón. Geología y la litosfera. Serie Investigación 15:1–326

    Google Scholar 

  • Devau N, Le Cadre E, Hinsinger P, Gérard F (2010) A mechanistic model for understanding root-induced chemical changes controlling phosphorus availability. Ann Bot, mcq098

    Google Scholar 

  • Díez Garretas B, Fernández-González F, Asensi A (1996) Revisión nomenclatural del orden Gypsophiletalia Bellot, Rivas Goday in Rivas Goday et al. 1957 y de sus sintáxones subordinados. Lazaroa 17:147–153

    Google Scholar 

  • Díez Garretas B, Fernández-González F, Asensi A (1999) Revisión nomenclatural de la Clase Rosmarinetea officinalis en la Península Ibérica e Islas Baleares. Itinera Geobotanica 11:315–364

    Google Scholar 

  • Dong H, Rech JA, Jiang H, Sun H, Buck BJ (2007) Endolithic cyanobacteria in soil gypsum: occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) Deserts. J Geophys Res Biogeosci 112(G2)

    Google Scholar 

  • Doubková P, Vlasáková E, Sudová R (2013) Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant Soil 370(1–2):149–161

    Article  CAS  Google Scholar 

  • Drenovsky RE, Koehler CE, Skelly K, Richards JH (2013) Potential and realized nutrient resorption in serpentine and non-serpentine chaparral shrubs and trees. Oecologia 171:39–50

    Article  PubMed  Google Scholar 

  • Drohan PJ, Merkler DJ (2009) How do we find a true gypsophile? Geoderma 150:96–105

    Article  Google Scholar 

  • Dudic B, Rakic T, Sinzar-Sekulic J, Atanackovic V, Stevanovic B (2007) Differences of metal concentrations and morpho-anatomical adaptations between obligate and facultative serpentinophytes from Western Serbia. Arch Biol Sci Belgrade 59(4):341–349

    Article  Google Scholar 

  • Duvigneaud P, Denaeyer-De Smet S (1966) Accumulation du soufre dans quelques espèces gypsophiles d’Espagne. Bull Soc R Bot Belg 99:263–269

    Google Scholar 

  • Duvigneaud P, Denaeyer-de Smet S (1968) Essai de classification chimique (éléments minéraux) des plantes gypsicoles du bassin de l’Ebre. Bull Soc R Bot Belg 101:279–291

    Google Scholar 

  • Duvigneaud P, Denaeyer-de Smet S (1973) Considerations sur l’ecologie de la nutrition minerale des tapis vegetaux naturels. Oecologia Plantarum 8:219–246

    CAS  Google Scholar 

  • Elmendorf SC, Moore KA (2007) Plant competition varies with community composition in an edaphically complex landscape. Ecology 88(10):2640–2650

    Article  PubMed  Google Scholar 

  • Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann H, Sterner RW (2000) Nutritional constrains in terrestrial and freshwater food webs. Nature 408:578–580

    Article  CAS  PubMed  Google Scholar 

  • Escoto M, Fernández J, Martín F (2007) Determination of phytotoxicity of soluble elements in soilsbased on a bioassay with lettuce (Lactuca sativa L.) Sci Total Environ 378:63–66

    Article  CAS  Google Scholar 

  • Escudero A, Somolinos RC, Olano J, Rubio A (1999) Factors controlling the establishment of Helianthemum squamatum, an endemic gypsophile of semi-arid Spain. J Ecol 87(2):290–302

    Article  Google Scholar 

  • Escudero A, Palacio S, Maestre FT, Luzuriaga AL (2015) Plant life on gypsum: a review of its multiple facets. Biol Rev 90:1–18. doi:10.1111/brv.12092

    Article  PubMed  Google Scholar 

  • EU (1992) Directiva 92/43/CEE del Consejo, de 21 de mayo de 1992, relativa a la conservación de los hábitats naturales y de la fauna y la flora silvestres

    Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Flowers SA (2005) Why does salinity pose such a difficult problem for plant breeders? Agric Water Manag 78:15–24

    Article  Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612

    Article  Google Scholar 

  • Font-Quer P (1953) Diccionario de Botánica. Ed. Labor, Barcelona, p 1110

    Google Scholar 

  • Fort R, Bustillo M (1986) Estudio geoquímico de los yesos Miocenos de la zona Este de la Cuenca de Madrid. Estud Geol 42:387–395

    Article  CAS  Google Scholar 

  • Freitas H, Prasad MNV, Pratas J (2004) Analysis of serpentinophytes from northeast of Portugal for trace metal accumulation relevance to the management of mine environment. Chemosphere 54:1625–1642. doi:10.1016/j.chemosphere.2003.09.045

    Article  CAS  PubMed  Google Scholar 

  • Friedmann EL, Ocampo-Friedmann R (1995) A primitive cyanobacterium as pioneer microorganism for terraforming Mars. Adv Space Res 15(3):243–246

    Article  CAS  PubMed  Google Scholar 

  • Gankin R, Major J (1964) Arctostaphylos myrtifolia, its biology and relationship to the problem of endemism. Ecology 45(4):792–808

    Article  Google Scholar 

  • Garrido Becerra JA, Martínez Hernández F, Mota Poveda JF (2004) Biogeografía y conservación en las comunidades vegetales en yeso de la Península Ibérica (Orden Gypsophiletalia Bellot, Rivas Goday in Rivas Goday et al. 1957). In: Peñas de Giles J, Gutiérrez Carretero L (eds) Biología de la Conservación. Reflexiones, propuestas y estudios desde el S.E. Ibérico. Instituto de Estudios Almerienses, Almería, pp 219–234

    Google Scholar 

  • Garrido-Becerra JA, Martínez-Hernández F, Pérez García FJ, Jiménez-Sánchez ML, Sola Gómez AJ, Mendoza-Fernández AJ, Medina-Cazorla JM, Valle F, Mota JF (2011) La vegetación del orden Gypsophiletalia: matorrales sobre yeso. In: Mota JF, Sánchez-Gómez P, Guirado Romero JS (eds) Diversidad vegetal de las yeseras ibéricas. ADIF – Mediterráneo Asesores Consultores, Almería, pp 511–526

    Google Scholar 

  • Gendrin A, Mangold N, Bibring J, Langevin Y, Gondet B, Poulet F, Bonello G, Quantin C, Mustard J, Arvidson R, LeMoue’lic S (2005) Sulfates inMartian layered terrains: theOMEGA/Mars Express view. Science 307:1587–1591

    Article  CAS  PubMed  Google Scholar 

  • Gibbens RP, Lenz JM (2001) Root systems of some Chihuahuan Desert plants. J Arid Environ 49(2):221–263

    Article  Google Scholar 

  • Gil de Carrasco C, Ramos Miras JJ (2011) Los suelos yesíferos (Gipsisoles). In: Mota JF, Sánchez-Gómez P, Guirado Romero JS (eds) Diversidad vegetal de las yeseras ibéricas. ADIF – Mediterráneo Asesores Consultores, Almería, pp 33–50

    Google Scholar 

  • Gola G (1910) Saggio di una teoria osmotica dell'edafismo. Annali di botánica VIII:275–491

    Google Scholar 

  • Gómez-Campo C (ed) (1987) Libro rojo de especies vegetales amenazadas de España peninsular e islas Baleares. Ministerio de Agricultura, Pesca y Alimentación, ICONA, Madrid

    Google Scholar 

  • Gómez-Zotano J (2003) El papel de los espacios montañosos como traspaís del Litoral Mediterráneo Andaluz: el caso de Sierra Bermeja (provincia de Málaga). PhD thesis, Universidad de Granada

    Google Scholar 

  • Gómez-Zotano J, García Martínez P (2009) La transformación de los espacios forestales en espacios protegidos: los montes y el futuro Parque Nacional de Sierra Bermeja. In: Araque Jiménez E, Sánchez Martínez JD (eds) Repoblación forestal en Andalucía: intervenciones históricas y situación actual. Universidad de Jaén, Jaen, pp 247–290

    Google Scholar 

  • Gómez-Zotano J, Román-Requena F, Hidalgo-Triana N, Pérez-Latorre AV (2014) Biodiversidad y valores de conservación de los ecosistemas serpentínicos en España: Sierra Bermeja (provincia de Málaga). Boletín de la Asociación de Geógrafos Españoles 65:187–206

    Google Scholar 

  • Gómez-Zotano J, Román-Requena F, Thorne JH (2015) Attributes and roadblocks: a conservation assessment and policy review of the Sierra Bermeja, a Mediterranean Serpentine Landscape. Nat Areas J 35(2):328–343

    Article  Google Scholar 

  • Greipsson S (2011) Phytoremediation. Nat Edu Knowl 3(10):7

    Google Scholar 

  • Griggs RF (1940) The ecology of rare plants. Bull Torrey Bot Club 67(7):575–594

    Article  Google Scholar 

  • Grigore MN, Toma C, Zamfirache MM, Boscaiu M (2011) Anatomical considerations on spanish gypsophytes. Where is their place within plant ecology? Scientific Annals of Alexandru Ioan Cuza University of Iasi New Series, Section 2. Plant Biol 57:31–38

    Google Scholar 

  • Guerra-Velasco JC (2005) Los sabinares albares de Juniperus thurifera L.: estructura y dinámica de una formación difusa en las llanuras del centro de la Cuenca del Duero. Eria 66:5–25

    Google Scholar 

  • Guerrero-Campo J, Alberto F, Hodgson J, Garcı́a-Ruiz JM, Montserrat-Martı́ G (1999) Plant community patterns in a gypsum area of NE Spain. I. Interactions with topographic factors and soil erosion. J Arid Environ 41(4):401–410

    Article  Google Scholar 

  • Güsewell S (2004) N: P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266

    Article  Google Scholar 

  • Güsewell S, Koerselman M (2002) Variation in nitrogen and phosphorus concentrations of wetland plants. Perspect Plant Ecol 5:37–61

    Article  Google Scholar 

  • Harkat H, Haba H, Marcourt L, Long C, Benkhaled M (2007) An unusual lignan sulfate and aromatic compounds from Frankenia thymifolia Desf. Biochem Syst Ecol 35(3):176–179

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam Md M, Bhowmik PC, Hossain Md A, Rahman MM, Vara Prasad MN, Ozturk M, Bromham LMF (2015) Macroevolutionary patterns of salt tolerance in angiosperms. Ann Bot 115:333–341

    Article  Google Scholar 

  • Hawkesford M, Horst W, Kichey T, Lambers H, Schjoerring J, Skrumsager Møller I, White P (2012) Functions of macronutrients. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic, London, pp 135–190

    Google Scholar 

  • Hazard C, Gosling P, Mitchell DT, Doohan FM, Bending GD (2014) Diversity of fungi associated with hair roots of ericaceous plants is affected by land use. FEMS Microbiol Ecol 87(3):586–600

    Article  CAS  PubMed  Google Scholar 

  • Herrero J (1991) Morfología y génesis de suelos sobre yesos. Inst. Nacional de Investigaciones Agrarias, Madrid

    Google Scholar 

  • Herrero J, Artieda O, Hudnall WH (2009) Gypsum, a tricky material. Soil Sci Soc Am J 73(6):1757–1763

    Article  CAS  Google Scholar 

  • Hinsinger P (1998) How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Adv Agron 64:225–265

    Article  CAS  Google Scholar 

  • Hinsinger P (2011) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  Google Scholar 

  • Hinze WJ, Ehrlich R, Bennett HF, Pletcher D, Zaitzeff E, Tiffany OL (1967) Use of an earth analog in lunar mission planning. Icarus 6(1):444–452

    Article  Google Scholar 

  • Hiouani F (2006) Influence de la teneur en gypse et de la taille de ses grains sur la capacité de retention en eau sur les sols de zone de Ain Benoui –Biskra. M.S. thesis. Ministere de L’Enseignement Superieur et de la Recherche, Algiers

    Google Scholar 

  • Hughes R, Bachmann K, Smirnoff N, Macnair MR (2001) The role of drought tolerance in serpentine tolerance in the Mimulus guttatus Fischer ex DC. complex. S Afr J Sci 97:581–586

    Google Scholar 

  • ICOMOS (1964) The Venice Charter, International Charter for the conservation and restoration of monuments and sites. II International Congress of Architects and Technicians of Historic Monuments, Venice

    Google Scholar 

  • Imbert E, Youssef S, Carbonell D, Baumel A (2011) Do endemic species always have a low competitive ability? A test for two Mediterranean plant species under controlled conditions. J Plant Ecol 5(3):305–312

    Article  Google Scholar 

  • Ivalú NC, Kliebenstein DJ, Strauss SY (2015) Macroevolutionary patterns of glucosinolate defense and tests of defense-escalation and resource availability hypotheses. New Phytol 208(3):915–927

    Article  CAS  Google Scholar 

  • Izco J (1974) Pastizales terofíticos de la provincia de Madrid: Thero-Brachypodion y Sedo-Ctenopsion. Anales Inst Bot Cavanilles 31:209–224

    Google Scholar 

  • Jungk A (2001) Root hairs and the acquisition of plant nutrients from soil. J Plant Nutr Soil Sci 164(2):121–129

    Article  CAS  Google Scholar 

  • Kanter U, Hauser A, Michalke B, Dräxl S, Schäffner AR (2010) Caesium and strontium accumulation in shoots of Arabidopsis thaliana: genetic and physiological aspects. J Exp Bot, erq213

    Google Scholar 

  • Kartosentono S, Nuraida A, Indrayanto G, Zaini NC (2001) Phytoremediation of Sr2+ and its influence on the growth, Ca2+ and solasodine content of shoot cultures of Solanum laciniatum. Biotechnol Lett 23(2):153–155

    Article  CAS  Google Scholar 

  • Keren R, Kreit JF, Shainberg I (1980) Influence of size of gypsum particles on the hydraulic conductivity of soils. Soil Sci 130(3):113–117

    Article  Google Scholar 

  • Kirishima A, Sasaki T, Sato N (2015) Solution chemistry study of radioactive Sr on Fukushima Daiichi NPS site: Fukushima NPP accident related. J Nucl Sci Technol 52(2):152–161

    Article  CAS  Google Scholar 

  • Klančnik K, Vogel-Mikuš K, Kelemen M, Vavpetič P, Pelicon P, Kump P, Gaberščik A (2014) Leaf optical properties are affected by the location and type of deposited biominerals. J Photochem Photobiol B Biol 140:276–285

    Article  CAS  Google Scholar 

  • Knight H (2000) Calcium signaling during abiotic stress inplants. Int Rev Cytol 195:269–324

    Article  CAS  PubMed  Google Scholar 

  • Kopriva S, Talukdar D, Takahashi H, Hell R, Sirko A, D’Souza SF, Talukdar T (2016) Editorial: frontiers of sulfur metabolism in plant growth, development, and stress response. Front Plant Sci 6:1220. doi:10.3389/fpls.2015.01220

    Article  PubMed  PubMed Central  Google Scholar 

  • Kruckeberg AR (1984) California serpentines: flora, vegetation, geology, soils, and management problems. University of California Press, Berkeley

    Google Scholar 

  • Kruckeberg AR (1992) Plant life of western North American ultramafics. In: Roberts BA, Proctor J (eds) The ecology of areas with serpentinized rocks. A world view. Kluwer Academic Publishers, Dordrecht, pp 31–73

    Chapter  Google Scholar 

  • Kruckeberg AR (2002) Geology and plant life. University of Washington Press, Seattle

    Google Scholar 

  • Kruckeberg AR, Rabinowitz D (1985) Biological aspects of endemism in higher plants. Annu Rev Ecol Syst 16:447–479. doi:10.1146/annurev.es.16.110185.002311

    Article  Google Scholar 

  • Küpfer PH (2003) Hormatophylla. In: Castroviejo S, Aedo C, Cirujano S, Laínz M, Montserrat P, Morales R, Muñoz Garmendia F, Navarro C, Paiva J, Soriano C (eds) Flora iberica. Plantas vasculares de la Península Ibérica e Islas Baleares. Real Jardín Botánico, CSIC, Madrid

    Google Scholar 

  • Laguna E, Deltoro VI, Pérez-Botella J, Pérez-Rovira P, Serra L, Olivares A, Fabregat C (2004) The role of small reserves in plant conservation in a region of high diversity in eastern Spain. Biol Conserv 119(3):421–426

    Article  Google Scholar 

  • Landwehr M, Hilderbrandt U, Wilde P, Nawrath K, Toth T, Biro B, Bothe H (2002) The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza 12:199–211

    Article  CAS  PubMed  Google Scholar 

  • Leuschner C, Hertel D, Schmid I, Koch O, Muhs A, Hölscher D (2004) Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility. Plant Soil 258(1):43–56

    Article  CAS  Google Scholar 

  • Liancourt P, Callaway RM, Michalet R (2005) Stress tolerance abilities and competitive responses determine the outcome of biotic interactions. Ecology 86:1611–1618

    Article  Google Scholar 

  • Liétor J, Linares JC, Martín-García JM, García-Ruíz R, Carreira JA (2003) Relaciones suelo-planta en bosques de Abies Pinsapo Boiss. Disponibilidad de nutrientes y estatus nutricional. Acta Botanica Malacitana 28:89–104

    Google Scholar 

  • Loidi J, Costa M (1997) Sintaxonomía de los matorrales gipsícolas españoles. Fitosociologia 32:221–227

    Google Scholar 

  • Loidi J, Fernández-González F (1994) The gypsophilous scrub communities of the Ebro Valley. Phytocoenologia 24:383–399

    Article  Google Scholar 

  • López Quintanilla J (coord.) (2013) Los pinsapares en Andalucia (Abies pinsapo Boiss.): Conservación y sostenibilidad en el siglo XXI. Universidad de Córdoba, Servicio de Publicaciones

    Google Scholar 

  • López-Lozano NE, Eguiarte LE, Bonilla-Rosso G, García-Oliva F, Martínez-Piedragil C, Rooks C, Souza V (2012) Bacterial communities and the nitrogen cycle in the gypsum soils of Cuatro Ciénegas basin, Coahuila: a Mars analogue. Astrobiology 12(7):699–709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malik N, Biswas AK (2012) Role of higher plants in remediation of metal contaminated sites. Sci Rev Chem Commun 2:141–146

    CAS  Google Scholar 

  • Malzer CL, Barber SA (1975) Precipitation of calcium and strontium sulfates around plant roots and its evaluation. Soil Sci Soc Am Proc 39:492–495

    Article  CAS  Google Scholar 

  • Manning JC, Helme NA (2014) Frankenia fruticosa (Frankeniaceae), a new dwarf shrub from the Knersvlakte, Western Cape. S Afr J Bot 91:84–87

    Article  Google Scholar 

  • Marchal FM, Lendínez ML, Salazar C, Torres JA (2008) Contributions to the knowledge of gypsic vegetation in western Granada province (S. Spain). Lazaroa 29:95–100

    Google Scholar 

  • Marschner H (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic, London

    Google Scholar 

  • Martín García JM, Aranda V, Calero J, Sánchez-Marañón M, Delgado R (2013) Los suelos del pinsapar Andaluz. In: López Quintanilla: Los pinsapares en Andalucia (Abies pinsapo Boiss.): Conservación y sostenibilidad en el siglo XXI, pp 235–245. Universidad de Córdoba. Servicio de Publicaciones

    Google Scholar 

  • Martínez-Hernández F, Medina-Cazorla JM, Mendoza-Fernández A, Pérez-García FJ, Sánchez-Gómez P, Garrido-Becerra JA, Gil de Carrasco C, Mota JF (2009) Preliminary essay on the chorology of the Iberian gypsicolous flora: rarity and richness of the gypsum outcrops. Acta Botanica Gallica 156:9–18

    Article  Google Scholar 

  • Martínez-Hernández F, Pérez-García FJ, Garrido-Becerra JA, Mendoza-Fernández AJ, Medina-Cazorla JM, Martínez-Nieto MI, Merlo Calvente ME, Mota JF (2011) The distribution of Iberian gypsophilous flora as a criterion for conservation policy. Biodivers Conserv 20(6):1353–1364. doi:10.1007/s10531-011-0031-2

    Article  Google Scholar 

  • Martínez-Hernández F, Mendoza-Fernández AJ, Pérez-García FJ, Martínez-Nieto MI, Garrido-Becerra JA, Salmerón-Sánchez E, Merlo ME, Gil C, Mota JF (2015) Areas of endemism as a conservation criterion for Iberian gypsophilous flora: a multi-scale test using the NDM/VNDM program. Plant Biosys 149(3):483–493

    Article  Google Scholar 

  • Martínez-Labarga JM (2009) Pinus nigra Arnold subsp. salzmannii (Dunal) Franco sobre yesos en la alcarria de Cuenca. Actas del 5° Congreso Forestal Español. Junta de Castilla y León, Ávila

    Google Scholar 

  • Marx R, Lee D, Lloyd KM, Lee WG (2004) Phytolith morphology and biogenic silica concentrations and abundance in leaves of Chionochloa (Danthonieae) and Festuca (Poeae) in New Zealand. N Z J Bot 42(4):677–691

    Article  Google Scholar 

  • Medina-Cazorla JM (2015) Conservación y Biogeografia de la flora dolomitófila bética. PhD thesis, Universidad de Almería, Inédita

    Google Scholar 

  • Medina-Cazorla JM, Pérez-García FJ, Garrido-Becerra JA, Martínez-Hernández F, Mendoza A, Pérez-Latorre AV, Mota JF (2005) Riqueza y rareza florísticas en los afloramientos dolomíticos de las Cordilleras Béticas (sur de España): ensayo preliminar. Acta Botanica Malacitana 30:111–126

    Google Scholar 

  • Medina-Cazorla JM, Mendoza Fernández AJ, Garrido-Becerra JA, Martínez-Hernández F, Pérez-García FJ, Romera MC, Ruiz Hernández S, Gil C, Merlo ME, Mota Poveda JF (2008) Los hábitats de dolomías del Parque Nacional de Sierra Nevada: una aproximación desde la Biogeografía de la Conservación. In: Ramírez L, Asensio B (eds) Proyectos de investigación en Parques Nacionales: 2003–2006. Organismo Autónomo de Parques Nacionales, Ministerio de Medio Ambiente, Madrid

    Google Scholar 

  • Medina-Cazorla JM, Gil de Carrasco C, Merlo ME, Martínez-Hernández F, Garrido-Becerra JA, Salmerón E, Mendoza A, Pérez-García FJ, Mota JF (2010a) The dolomite shrublands of the Convolvuletalia boissieri order and their preservation by means of the Habitats Directive. Acta Bot Gall 157(4):611–625

    Article  Google Scholar 

  • Medina-Cazorla JM, Garrido-Becerra JA, Mendoza-Fernández AJ, Pérez-García FJ, Salmerón E, Gil C, Mota Poveda JF (2010b) Biogeography of the Baetic ranges (SE Spain): a historical approach using cluster and parsimony analyses of endemic dolomitophytes. Plant Biosys 144(1):111–120

    Article  Google Scholar 

  • Megías AG, Sánchez-Piñero F, Hódar JA (2011) Trophic interactions in an arid ecosystem: from decomposers to top-predators. J Arid Environ 75:1333–1341

    Article  Google Scholar 

  • Mengoni A, Gonnelli C, Brocchini E, Galardi F, Pucci S, Gabbrielli R, Bazzicalupo M (2003) Chloroplast genetic diversity and biogeography in the serpentine endemic Ni-hyperaccumulator Alyssum bertolonii. New Phytol 157:349–356

    Article  Google Scholar 

  • Mengoni A, Schat H, Vangronsveld J (2010) Plants as extreme environments? Ni-resistant bacteria and Ni-hyperaccumulators of serpentine flora. Plant Soil 331(1–2):5–16

    Article  CAS  Google Scholar 

  • Merlo ME, Mota JF, Alemán MM, Cabello J (1998) La gipsofilia en plantas: un apasionante edafismo. Investigación y Gestión 3:103–112

    Google Scholar 

  • Merlo ME, Rodríguez-Tamayo ML, Jiménez ML, Mota JF (2001) Recapitulación sobre el comportamiento biogeoquímico de algunos gipsófitos y halófitos ibéricos. Monografías de Flora y Vegetación Béticas 12:77–95

    Google Scholar 

  • Merlo ME, Gil de Carrasco C, Sola Gómez AJ, Jiménez Sánchez ML, Rodríguez Tamayo ML, Mota JF (2009) Can gypsophytes distinguish different types of gypsum habitats? Acta Botanica Gallica 156(1):63–78

    Article  Google Scholar 

  • Merlo ME, Mota JF, Sánchez Gómez P (2011) Ecofisiología y adaptaciones de las plantas vasculares a las características físicas y químicas de sustratos especiales. In: Mota JF, Sánchez-Gómez P, Guirado JS (eds) Diversidad vegetal de las yeseras ibéricas. ADIF - Mediterráneo Asesores Consultores, Almería, pp 51–74

    Google Scholar 

  • Meyer SE (1986) The ecology of gypsophile endemism in the eastern Mojave Desert. Ecology 67:1303–1313

    Article  Google Scholar 

  • Molano-Flores B (2001) Herbivory and calcium concentrations affect calcium oxalate crystal formation in leaves of Sida (Malvaceae). Ann Bot 88:387–391

    Article  CAS  Google Scholar 

  • Moore MJ, Mota JF, Douglas NA, Flores Olvera H, Ochoterena O (2014) The ecology, assembly and evolution of gypsophile floras. In: Rajakaruna N, Boyd RS, Harris TB (eds) Plant ecology and evolution in harsh environments, Chapter 5. Nova Science Publishers, Hauppauge, pp 97–128

    Google Scholar 

  • Mota JF (2001) Análisis de agrupamiento o de “cluster” aplicado al estudio de la flora y vegetación de yesos. In: Aguilera P, Garrido Frenich A (eds) Aplicaciones ambientales del análisis multivariante, Monografías de Ciencia y Tecnología. Ciencia y Tecnología. Servicio de publicaciones de la Universidad de Almería, Almería, pp 143–176

    Google Scholar 

  • Mota JF (2007) Vegetación de escarpes, gleras y rocas. In: Blanca G, Valle V (eds) Proyecto Andalucía. Tomo XXIV, Botánica V. Publicaciones Comunitarias, Sevilla, pp 139–162

    Google Scholar 

  • Mota JF, Valle F (1992) Notas fitosociológicas sobre los blanquizares Béticos. Actes del Simposi Internacional de Botánica Pius Font Quer 2:283–290

    Google Scholar 

  • Mota JF, Valle F, Cabello J (1993a) Dolomitic vegetation of South Spain. Vegetatio 109(1):29–45

    Article  Google Scholar 

  • Mota JF, Alvarado JJ, Gómez F, Valle F, Cabello J (1993b) Vegetación gipsícola y conservación de la naturaleza. Colloques Phytosociologiques 21:677–688

    Google Scholar 

  • Mota JF, Cabello J, Cueto M, Gómez F, Giménez E, Peñas de Giles J (1997) Datos sobre la vegetación del Sureste de Almería. Universidad de Almería, Almería

    Google Scholar 

  • Mota JF, Sola AJ, Dana ED, Jiménez–Sánchez ML (2003) Plant succession in abandoned gypsum quarries in Southeast Spain. Phytocoenologia 33:13–28

    Article  Google Scholar 

  • Mota JF, Garrido-Becerra JA, Martínez-Hernández F, Medina-Cazorla JM, Dana ED, Rodríguez-Tamayo ML (2004a) Fitosociología y series de vegetación. In: Mota JF, Cabello J, Cerrillo MI, Rodríguez-Tamayo ML (eds) Los subdesiertos de Almería, Naturaleza de Cine. Consejería de Medio Ambiente, Junta de Andalucía, Sevilla, pp 173–214

    Google Scholar 

  • Mota JF, Sola-Gómez AJ, Jiménez-Sánchez ML, Pérez-García FJ, Merlo ME (2004b) Gypsicolous flora, conservation and restoration of quarries in the southeast of the Iberian Peninsula. Biodivers Conserv 13:1797–1808

    Article  Google Scholar 

  • Mota JF, Sola-Gómez AJ, Jiménez-Sánchez ML, Pérez-García FJ, Merlo ME (2004c) Gypsophilous flora and quarries: some remarks on the preservation and restoration of gypsum outcrops. Ecologia Mediterranea 30:107–109

    Google Scholar 

  • Mota JF, Merlo ME, Pérez-García F, Garrido-Becerra JA, Martínez-Hernández F, Sánchez-Gómez P, Rodríguez-Tamayo ML, Posadas L, Ruiz S, Gil de Carrasco C (2007) Plants growing on unusual substrates: the edaphism. Notes from the antipodes (Iberian Peninsula). 49th lAVS conference abstracts book, New Zealand, 165

    Google Scholar 

  • Mota JF, Medina-Cazorla JM, Navarro FB, Pérez-García FJ, Pérez-Latorre A, Sánchez-Gómez P, Torres JA, Benavente A, Blanca G, Gil C, Lorite J, Merlo ME (2008) Dolomite flora of the Baetic Ranges glades (South Spain): a review. Flora 203:359–375

    Article  Google Scholar 

  • Mota JF, Garrido-Becerra JA, Pérez-García FJ, Sola AJ, Valle F (2010) Use of the multi-response permutation procedure and indicator species value for the statistical classification of the gypsicolous Iberian scrub communities. Candollea 65(1):117–134

    Article  Google Scholar 

  • Mota JF, Sánchez-Gómez P, Guirado Romero JS (eds) (2011a) Diversidad vegetal de las Yeseras Ibéricas: El reto de los archipiélagos edáficos para la biología de la conservación. ADIF-Mediterráneo Asesores Consultores, Almería

    Google Scholar 

  • Mota JF, Merlo ME, Izco J (2011b) Recorrido histórico por la investigación botánica sobre la flora y vegetación gipsófilas en España. In: Mota JF, Sánchez-Gómez P, Guirado JS (eds) Diversidad vegetal de las yeseras ibéricas. ADIF – Mediterráneo Asesores Consultores, Almería, pp 75–88

    Google Scholar 

  • Mota JF, Garrido-Becerra JA, Martínez-Hernández F, Pérez-García FJ, Jiménez-Sánchez ML, Sola-Gómez AJ, Mendoza-Fernández AJ, Medina-Cazorla JM, Guirado JS, Merlo ME (2011c) La restauración de los aljezares. In: Mota JF, Sánchez-Gómez P, Guirado JS (eds) Diversidad vegetal de las yeseras ibéricas. ADIF – Mediterráneo Asesores Consultores, Almería, pp 587–606

    Google Scholar 

  • Nakata PA (2003) Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci 164(6):901–909

    Article  CAS  Google Scholar 

  • Naudé TW, Naidoo V (2007) Oxalates-containing plants. In: Gupta RC (ed) Veterinary toxicology: basic and applied principles. Elsevier Academic Press, Amsterdam, pp 880–891

    Chapter  Google Scholar 

  • Nieto LR, de la Fuente GV, Sánchez-Mata D, Rodríguez-Rojo MP (2004) Studies on Iberian Peninsula ultramafic flora: a selected nickel accumulation screening. Lazaroa 25:161–167

    Google Scholar 

  • Novak FA (1928) Quelques remarques relatives au problème de la végétation sur les terrains serpentiniques. Preslia 6:42–71

    Google Scholar 

  • O’Dell RE, Jeremy JJ, James HR (2006) Congeneric serpentine and nonserpentine shrubs differ more in leaf Ca: Mg than in tolerance of low N, low P, or heavy metals. Plant Soil 280:49–64

    Article  CAS  Google Scholar 

  • Olarieta JR, Usón A, Rodríguez R, Rosa M, Blanco R, Antúnez M (2000) Land requirements for Pinus halepensis Mill. growth in a plantation in Huesca, Spain. Soil Use Manag 16(2):88–92

    Article  Google Scholar 

  • Olarieta JR, Rodríguez-Ochoa R, Ascaso E (2012) Soil gypsum and increased penetration resistance restrict early growth of Quercus ilex plantations. Arid Land Res Manag 26(3):250–260

    Article  Google Scholar 

  • Olde Venterink H, Wassen MJ, Verkroost AWM, de Ruiter PC (2003) Species richness–productivity patterns differ between N-, P-, and K-limited wetlands. Ecology 84(8):2.191–2.199

    Article  Google Scholar 

  • Oliveira de Araujo T, de Freitas SL, Santana BV, Kuki KN, Pereira EG, Azevedo AA, da Silva LC (2014) Morphoanatomical responses induced by excess iron in roots of two tolerant grass species. Environ Sci Pollut Res Int 22(3):2187–2195. doi:10.1007/s11356-014-3488-1

    Article  CAS  Google Scholar 

  • Orella JC, Simón JC, VaqueroJ CA, Matilla B, Garzo MA, Sánchez E (1998) La Lista nacional de Lugares de la Directiva hábitats 92/43 CEE. Metodología y proceso de evaluación. Ecología 12:3–65

    Google Scholar 

  • Oyonarte C, Sanchez G, Urrestarazu M, Alvarado JJ (2002) A comparison of chemical properties between gypsophile and nongypsophile plant rhizospheres. Arid Land Res Manag 16:47–54

    Article  CAS  Google Scholar 

  • Palacio S, Escudero A, Montserrat-Martí G, Maestro M, Milla R, Albert MJ (2007) Plants living on gypsum: beyond the specialist model. Ann Bot 99:333–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palacio S, Aitkenhead M, Escudero A, Montserrat-Martí G, Maestro M, Robertson J (2014a) Gypsophile chemistry unveiled: Fourier Transform Infrared (FTIR) spectroscopy provides new insight into plant adaptations to gypsum soils. PLoS One 9(9):e107285. doi:10.1371/journal.pone.0107285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palacio S, Azorín J, Montserrat-Martí G, Ferrio JP (2014b) The crystallization water of gypsum rocks is a relevant water source for plants. Nat Commun 5:4660. doi:10.1038/ncomms5660

    Article  CAS  PubMed  Google Scholar 

  • Palenzuela J, Ferrol N, Boller T, Azcón-Aguilar C, Oehl F (2008) Otospora bareai, a new fungal species in the Glomeromycetes from a dolomitic shrub land in Sierra de Baza National Park (Granada, Spain). Mycologia 100(2):296–305

    Article  CAS  PubMed  Google Scholar 

  • Pando-Moreno M, Molina V, Jurado E, Flores J (2014) Effect of biological soil crusts on the germination of three plant species under laboratory conditions. Bot Sci 92(2):273–279

    Article  Google Scholar 

  • Patterson TB, Givnish TJ (2004) Geographic cohesion and parallel adaptive radiations in Calochortus (Calochortaceae): evidence from a cpDNA sequence phylogeny. New Phytol 161:253–264

    Article  CAS  Google Scholar 

  • Perez-Garcia FJ, Cueto Romero M, Peñas de Giles J, Martínez-Hernández F, Medina-Cazorla JM, Garrido-Becerra JA, Mota Poveda JF (2007) Selection of an endemic flora reserve network and its biogeographical significance in the Baetic Ranges (Southern Spain). Acta Botanica Gallica 154(4):545–571

    Article  Google Scholar 

  • Pérez-Garcia FJ, Martínez-Hernández F, Garrido-Becerra JA, Mendoza-Fernández AJ, Medina-Cazorla JM, Martínez-Nieto MI, Mota JF (2011) Biogeografía de la conservación en los aljezares ibéricos: Patrones corológicos y selección de reservas. In: Mota JF, Sánchez-Gómez P, Guirado JS (eds) Diversidad vegetal de las yeseras ibéricas. El reto de los archipiélagos edáficos para la biología de la conservación. ADIF – Mediterráneo Asesores Consultores, Almería, pp 569–586

    Google Scholar 

  • Pérez-Latorre AV (coord.) (2009) Informe y solicitud de declaración para los únicos macizos peridotíticos de España como: Parque Nacional de Sierra Bermeja, Málaga, Andalucía. http://www.ecologistasenaccion.es/IMG/pdf_Solicitud_Parque_Nacional_Sierra_Bermeja.pdf

  • Pérez-Latorre A, Galán de Mera A, Cabezudo B (1999) Propuesta de aproximación sintaxonómica sobre las comunidades de gimnospermas de la provincia Bética (España). Acta Botanica Malacitana 24:257–262

    Google Scholar 

  • Pérez-Latorre AV, Hidalgo-Triana N, Cabezudo B (2013a) Composition, ecology and conservation of the south-Iberian serpentine flora in the context of the Mediterranean basin. Anales Jard Bot Madrid 70(1):62–71

    Article  Google Scholar 

  • Pérez-Latorre AV, Hidalgo Triana N, Casimiro Soriguer F, Cabezudo B (2013b) Flora y vegetación serpentinícola ibérica: Sierras de La Alpujata y de La Robla (Málaga, España). Lagascalia 33:43–74

    Google Scholar 

  • Pérez-Sánchez FJ, Pérez-Latorre AV (1998) Restauración vegetal de extracciones de áridos dolomíticos en la Costa del Sol Occidental (Sierra de Mijas, Málaga). Ecología 12:123–134

    Google Scholar 

  • Pichi Sermolli R (1948) Flora e vegetazione delle serpentine e delle altre ofioliti dell’alta valle del Tevere (Toscana). Webbia 6:1–380

    Article  Google Scholar 

  • Pignatti E, Pignatti S (2014) Plant life of the dolomites. Vegetation structure and ecology. Publication of the Museum of Nature South Tyrol, 8. XXXVII, Springer

    Google Scholar 

  • Pineda-Mares P, Martínez JF, Amante A, Ruíz VM (2001) Respuesta del maíz al fósforo y un mejorador de suelos en áreas yesosas de la zona media de San Luís Potosí. Rev. Chapingo. Serie Zonas Áridas 2:106–113

    Google Scholar 

  • Poch RM, De Coster W, Stoops G (1998) Pore space characteristics as indicator of soil behaviour in gypsiferous soils. Geoderma 87:87–109

    Article  Google Scholar 

  • Proctor J (1971) The plant ecology of serpentine II. Plant responses to serpentine soils. J Ecol 59:397–410

    Article  Google Scholar 

  • Proctor J (1992) Chemical and ecological studies on the vegetation of ultramafic sites in Britain. In: Roberts P (ed) The ecology of areas with serpentinized rocks. Springer, Dordrecht, pp 135–167

    Chapter  Google Scholar 

  • Proctor J (1999) Toxins, nutrient shortages and droughts: the serpentine challenge. Trends Ecol Evol 14:334–335

    Article  Google Scholar 

  • Proctor J, Woodell SRJ (1975) The ecology of serpentine soils. Adv Ecol Res 9:255–365

    Article  Google Scholar 

  • Quézel P (1953) Contribution á l’étude phytosociologique et géobotanique de la Sierra Nevada. Mem Soc Broteriana 9:5–78. Coimbr

    Google Scholar 

  • Rabier J, Laffont-Schwob I, Pricop A, Ellili A, D’enjoy-Weinkammerer G, Salducci MD, Prudent P, Lotmani B, Tonetto A, Masotti V (2014) Heavy metal and arsenic resistance of the halophyte Atriplex halimus L. along a gradient of contamination in a French Mediterranean sprayzone. Water Air Soil Pollut 225(7):1–16

    Article  CAS  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8(2):221–226

    Article  CAS  PubMed  Google Scholar 

  • Reeves RD, Brooks RR, Dudley TR (1983) Uptake of nickel by species of Alyssum, Bornmuellera and other genera of Old World Tribus Alysseae. Taxon 32:184–192

    Article  Google Scholar 

  • Reid N, Hill SM (2013) Spinifex biogeochemistry across arid Australia: mineral exploration potential and chromium accumulation. Appl Geochem 29:92–101

    Article  CAS  Google Scholar 

  • Rick AC (2012) Survey and analysis of plant communities growing on gypsum in the Western Australian Wheatbelt. Report for the Wheatbelt NRM region and the department of environment and conservation, Newdegate, WA

    Google Scholar 

  • Rincón A, Arenal F, González I, Manrique E, Lucas MM, Pueyo JJ (2008) Diversity of rhizobial bacteria isolated from nodules of the gypsophyte Ononis tridentata L. growing in Spanish soils. Microb Ecol 56(2):223–233

    Article  PubMed  Google Scholar 

  • Rivas Goday S (1969) Flora serpentinícola española. Nota primera. Edafismos endémicos del Reino de Granada. An Real Acad Farm 35(3):297–304

    Google Scholar 

  • Rivas Goday S (1973) Plantas serpentinícolas y dolomitícolas del sur de España. Boletín de la Sociedad Broteriana 47(2):161–178

    Google Scholar 

  • Rivas Goday S (1974) Edafismos ibéricos de rocas ultrabásicas y dolomíticas: interpretación biogeoquímica y sus posibles correlaciones cariológicas. Las Ciencias 39:66–73

    Google Scholar 

  • Rivas Goday S, Rivas-Martínez S (1969) Matorrales y tomillares de la Península Ibérica comprendidos en la clase Ononido-Rosmarinetea Br. Bl. 1947. Anales del Instituto de Botánica Cavanilles 25:1–297

    Google Scholar 

  • Rivas-Martínez S, Costa M (1970) Comunidades gipsícolas del centro de España. Anales Inst Bot Cavanilles 27:193–224

    Google Scholar 

  • Rivas-Martínez et al (2011) Mapa de series, geoseries y geopermaseries de vegetación de España. Memoria del Mapa de vegetación potencial de España, Parte II. Itinera Geobotanica 18(1–2):5–800

    Google Scholar 

  • Roccotiello E, Serrano HC, Mariotti MG, Branquinho C (2015) Nickel phytoremediation potential of the Mediterranean Alyssoides utriculata (L.) Medik. Chemosphere 119:1372–1378

    Article  CAS  PubMed  Google Scholar 

  • Rodman JE (1991a) A taxonomic analysis of glucosinolate-producing plants. Part I: Phenetics. Syst Bot 16:598–618

    Article  Google Scholar 

  • Rodman JE (1991b) A taxonomic analysis of glucosinolate-producing plants. Part II: Cladistics. Syst Bot 16:619–629

    Article  Google Scholar 

  • Rodriguez-Oubiña J, Ortiz S (1991) Los pastizales pioneros vivaces de los suelos serpentínicos del NO Ibérico. Lazaroa 12:333–344

    Google Scholar 

  • Romao RL (2003) Estructura espacial de comunidades de gipsófitos: interacciones bióticas y constricciones abióticas. PhD thesis, Universidad Politécnica de Madrid

    Google Scholar 

  • Rothschild LJ (1990) Earth analogs for Martian life. Microbes in evaporites, a new model system for life on Mars. Icarus 88(1):246–260

    Article  CAS  PubMed  Google Scholar 

  • Rugh CL (2004) Genetically engineered phytoremediation: one man's trash is another man’s transgene. Trends Biotechnol 22(10):496–498

    Article  CAS  PubMed  Google Scholar 

  • Ruiz N, Ward D, Saltz D (2002a) Responses of Pancratium sickenbergeri to simulated bulb herbivory: combining defence and tolerance strategies. J Ecol 90(3):472–479

    Article  Google Scholar 

  • Ruiz N, Ward D, Saltz D (2002b) Calcium oxalate crystals in leaves of Pancratium sickenbergeri: constitutive or induced defence? Funct Ecol 16(1):99–105

    Article  Google Scholar 

  • Rune O (1953) Plant life on serpentines and related rocks in the north of Sweden. Acta Phytogeogr Suec 31:1–139

    Google Scholar 

  • Salazar K, McNutt MK (2012) Mineral commodity summaries 2012. In: Survey USG (ed). U.S. Department of the Interior, Reston, p 201

    Google Scholar 

  • Salmerón-Sánchez E, Martínez-Nieto MI, Martínez-Hernández F, Garrido-Becerra JA, Mendoza-Fernández AJ, Gil de Carrasco C, Ramos-Miras JJ, Lozano R, Merlo ME, Mota JF (2014a) Ecology, genetic diversity and phylogeography of the Iberian endemic plant Jurinea pinnata (Lag.) DC. (Compositae) on two special edaphic substrates: dolomite and gypsum. Plant Soil 374(1–2):233–250

    Article  CAS  Google Scholar 

  • Salmerón-Sánchez E, Merlo ME, Medina-Cazorla JM, Pérez-García FJ, Martínez-Hernández F, Garrido-Becerra JA, Mendoza-Fernández AJ, Valle F, Mota JF (2014b) Variability, genetic structure and phylogeography of the dolomitophilous species Convolvulus boissieri (Convolvulaceae) in the Baetic ranges, inferred from AFLPs, plastid DNA and ITS sequences. Bot J Linn Soc 176:505–523

    Article  Google Scholar 

  • Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13(5):468–474

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Gómez P, Guerra J, Rodríguez E, Vera JB, López JA, Jiménez JF, Fernández S, Hernández A (2005) Lugares de interés botánico de la Región de Murcia. Consejería de Agricultura, Agua y Medio Ambiente, Dirección General del Medio Natural, Comunidad Autónoma de la Región de Murcia. Murcia

    Google Scholar 

  • Sánchez-Gómez P, López D, Jiménez JF, Mota JF (2009) Contribución al conocimiento de la flora de interés de los afloraminetos yesíferos y margosos del SE Ibérico. An Biol 31:49–55

    Google Scholar 

  • Sánchez-Gómez P, Torrente P, Jiménez JF, Canovas JL, Gutiérrez A (2015) Cistáceas del Sureste Ibérico con interés por su potencial micorrícico con diversos hongos hipogeos. An Biol 37:69–81

    Google Scholar 

  • Santos Guerra A (1993) Frankenia L. In: Castroviejo S, Aedo C, Cirujano S, Laínz M, Montserrat P, Morales R, Muñoz Garmendia F, Navarro C, Paiva J, Soriano C (eds) Flora iberica. Plantas vasculares de la Península Ibérica e Islas Baleares. Vol. III: Plumbaginaceae (partim)-Capparaceae. Real Jardín Botánico de Madrid (Consejo Superior de Investigaciones Científicas), Madrid, pp 446–453

    Google Scholar 

  • Schimper AFW (1902) Plant-geography upon a physiological basis. Clarendon Press, Oxford

    Google Scholar 

  • Schmid I, Leuschner CH (1998) Warum fehlt den Gipsbuchenwäldern des Kyffhäusers (Thüringen) eine Krautschicht ? Forstw Centralbl 117:277–288

    Article  Google Scholar 

  • SER (Society for Ecological Restoration International Science, Policy Working Group) (2004) The SER international primer on ecological restoration. www.ser.org. Society for Ecological Restoration International, Tucson

  • Sheoran V, Sheoran AS, Poonia P (2009) Phytomining: a review. Miner Eng 22(12):1007–1019

    Article  CAS  Google Scholar 

  • Sheoran V, Sheoran A, Poonia P (2011) Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol 41:168–214

    Article  Google Scholar 

  • Stebbins GL (1942) The genetic approach to problems of rare and endemic species. Madrono 6(8):241–258

    Google Scholar 

  • Thurmann J (1849) Essai de phytostatique appliquée à la chaine du Jura. Bern

    Google Scholar 

  • Turnau K, Henriques FS, Anielska T, Renker C, Buscot F (2007) Metal uptake and detoxification mechanisms in Erica andevalensis growing in a pyrite mine tailing. Environ Exp Bot 61:117–123

    Article  CAS  Google Scholar 

  • Tuyukina TY (2009) Geochemical studies of northern taiga (gypsum) karst ecosystems and their high vulnerability to natural and anthropogenic hazards. Environ Geol 58(2):269–274

    Article  CAS  Google Scholar 

  • Unger F (1836) Über den Einfluß des Bodens auf die Vertheilung der Gewächse, nachgewiesen in der Vegetation des nordöstlichen Tirols. Rohrmann u. Schweiger, Wien

    Google Scholar 

  • Valladares A (2009) 9520 Abetales de Abies pinsapo Boiss. In: VV, AA (eds) Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España. Dirección General de Medio Natural y Política Forestal, Ministerio de Medio Ambiente, y Medio Rural y Marino, Sección Bosques, Madrid

    Google Scholar 

  • Valle F (coord.) (2004) Datos botánicos aplicados a la Gestión del Medio Natural Andaluz. Modelos de Restauración Forestal. Consejería de Medio Ambiente, Junta de Andalucía. Sevilla

    Google Scholar 

  • Van Der Gaag P (2008) Mining water from gypsum. Int J Glob Environ Issues 8(3):274–281

    Article  Google Scholar 

  • Velasco F, Polo A, Ladero M, Almendros G (1980) La humificación en diversos ecosistemas forestales representativos de la provincia de Toledo. Anales de Jardín Botánico de Madrid 37:129–141

    Google Scholar 

  • Vlamis J, Jenny H (1948) Calcium deficiency in serpentine soils as revealed by absorbent technique. Science 107:549–551

    Article  CAS  PubMed  Google Scholar 

  • Walker RB (1954) Factors affecting plant growth on serpentine soil. In: Witthaker RH (ed) The ecology of serpentine soil: a symposium, Ecology, vol 35, pp 258–266

    Google Scholar 

  • Walker RB, Walker HM, Ashworth PR (1955) Calcium-Magnesium nutrition with special reference to serpentine soil. Plant Physiol 30:214–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HL, Tian CY, Jiang L, Wang L (2013) Remediation of heavy metals contaminated saline soils: a halophyte choice? Environ Sci Technol 48(1):21–22

    Article  PubMed  CAS  Google Scholar 

  • Wenzel W, Unterbrunner W, Sommer R, Sacco P, Chelate P (2003) Assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant Soil 249:83–89

    Article  CAS  Google Scholar 

  • Whittaker RH (1954) The ecology of serpentine soils: a symposium. I. Introduction. Ecology 35:258–259

    Article  Google Scholar 

  • Wierzchos J, Cámara B, De Los RA, Davila AF, Sánchez Almazo IM, Artieda O, Wierzchos K, Gómez-Silva B, Mckay C, Ascaso C (2011) Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars. Geobiology 9(1):44–60

    Article  CAS  PubMed  Google Scholar 

  • Willis JC (1922) Age and area. Cambridge Univerity Press, Cambridge

    Google Scholar 

  • Zefferman E, Stevens JT, Charles GK, Dunbar-Irwin M, Emam T, Fick S, Morales LV, Wolf KM, Young DJN, Young TP (2015) Plant communities in harsh sites are less invaded: a summary of observations and proposed explanations. AoB PLANTS 7: plv056

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Francisco Mota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mota, J.F., Garrido-Becerra, J.A., Merlo, M.E., Medina-Cazorla, J.M., Sánchez-Gómez, P. (2017). The Edaphism: Gypsum, Dolomite and Serpentine Flora and Vegetation. In: Loidi, J. (eds) The Vegetation of the Iberian Peninsula. Plant and Vegetation, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-54867-8_6

Download citation

Publish with us

Policies and ethics