Skip to main content

Oil and Gas Shales

  • Living reference work entry
  • First Online:
Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate

Abstract

Organic matter dispersed in shales and mudstones is 10,000 times more abundant than that occurring in concentrated forms such as oil, gas, coal, and gas hydrates. So-called shale plays, distributed across all continents, are fairways where shale gas and shale oil might be extracted economically from targeted volumes of what is an extremely large potential resource. Almost all shale gas and oil reservoirs currently being exploited were formerly buried to great depth during which time gas generation took place, and then geologically uplifted to depths where extraction is feasible commercially. Productive shale reservoirs are brittle rather than elastic and therefore suitable for hydraulic fracturing to be employed effectively for releasing the dispersed gas. In this chapter we provide an overview of the chemical, physical, and biological processes involved in the formation of shale gas and shale oil and outline how organic geochemistry can be applied to the exploration and production of these resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aplin AC, Macquaker JHS (2011) Mudstone diversity: origin and implications for source, seal, and reservoir properties in petroleum systems. AAPG Bull 95(12):2031–2059

    Article  Google Scholar 

  • Arning E, Fu Y, van Berk W, Schulz H-M (2011) Organic carbon remineralisation and complex, early diagenetic solid–aqueous solution–gas interactions: case study ODP Leg 204, Site 1246 (Hydrate Ridge). Mar Chem 126(1–4):120–131

    Article  CAS  Google Scholar 

  • Arning ET, van Berk W, Schulz H-M (2016) Fate and behaviour of marine organic matter during burial of anoxic sediments: testing CH2O as generalized input parameter in reaction transport models. Mar Chem 178:8–21

    Article  CAS  Google Scholar 

  • Arthur MA, Sageman BB (1994) Marine black shales: depositional mechanisms and environments of ancient deposits. Annu Rev Earth Planet Sci 22:499–551

    Article  CAS  Google Scholar 

  • Baker DR (1962) Organic geochemistry of Cherokee Group in southeastern Kansas and northeastern Oklahoma. AAPG Bull 46(9):1621–1642

    CAS  Google Scholar 

  • Bera B, Sushanta MK, Douglas V (2011) Understanding the micro structure of Berea Sandstone by the simultaneous use of micro-computed tomography (micro-CT) and focused ion beam-scanning electron microscopy (FIB-SEM). Micron 42:412–418

    Article  CAS  PubMed  Google Scholar 

  • Bernard S, Horsfield B (2014) Thermal maturation of gas shale systems. Annu Rev Earth Planet Sci 42:635–651

    Article  CAS  Google Scholar 

  • Bernard S, Horsfield B, Schulz HM, Schreiber A, Wirth R, Vu TTA, Perssen F, Könitzer S, Volk H, Sherwood N, Fuentes D (2010) Multi-scale detection of organic and inorganic signatures provides insights into gas shale properties and evolution. Chem Erde Geochem 70:119–133

    Article  CAS  Google Scholar 

  • Bernard S, Horsfield B, Schulz HM, Wirth R, Schreiber A, Sherwood N (2012a) Geochemical evolution of organic-rich shales with increasing maturity: a STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany). Mar Pet Geol 31:70–89

    Article  CAS  Google Scholar 

  • Bernard S, Wirth R, Schreiber A, Schulz HM, Horsfield B (2012b) Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (FortWorth Basin). Int J Coal Geol 103:3–11

    Article  CAS  Google Scholar 

  • Bernard S, Wirth R, Schreiber A, Bowen L, Aplin AC, Mathia EJ, Schulz H-M, Horsfield B (2013) FIB-SEM and TEM investigations of an organic-rich shale maturation series from the lower Toarcian Posidonia Shale, Germany: nanoscale pore system and fluid-rock interactions. In: Camp W, Diaz E, Wawak B (eds) Electron microscopy of shale hydrocarbon reservoirs. AAPG Memoir, Tulsa, vol 102, pp 53–66

    Google Scholar 

  • Binnion M (2012) How the technical differences between shale gas and conventional gas projects lead to a new business model being required to be successful. Mar Pet Geol 31(1):3–7

    Article  Google Scholar 

  • Boyer C, Clark B, Jochen V, Lewis R, Miller CK (2011) Shale gas: a global resource. Oilfield Rev 23:28–39

    Google Scholar 

  • Bullin K, Krouskop P (2008) Composition variety complicates processing plans for US shale gas. Presentation to the annual forum, Gas Processors Association – Houston Chapter, Houston, 7 Oct 2008

    Google Scholar 

  • Bustin AMM, Bustin RM, Cui X (2008) Importance of fabric on the production of gas shales. Presented at society of petroleum engineers unconventional reservoirs conference, Keystone, 10–12 Feb. https://doi.org/10.2118/114167-MS

  • Cane RF (1967) The constitution and synthesis of oil shale. In: Proceedings of the 7th World Petroleum Congress, Mexico City, pp 681–689

    Google Scholar 

  • Cane RF, Albion PR (1973) The organic geochemistry of torbanite precursors. Geochim Cosmochim Acta 37(6):1543–1549

    Article  CAS  Google Scholar 

  • Cardott BJ, Lambert MW (1985) Thermal maturation by vitrinite reflectance of Woodford Shale, Anadarko Basin, Oklahoma. AAPG Bull 69(11):1982–1998

    CAS  Google Scholar 

  • Cavanagh AJ, di Primio R, Scheck-Wenderoth M, Horsfield B (2006) Severity and timing of Cenozoic exhumation in the southwestern Barents Sea. J Geol Soc London 163(5):761–774

    Article  Google Scholar 

  • Chalmers GRL, Bustin RM, Power IM (2012) Characterization of gas shale pore systems by porosimetry, pycnometry, surface area and FE-SEM/TEM image analysis: examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig formations. AAPG Bull 96:1099–1119

    Article  CAS  Google Scholar 

  • Cooles GP, Mackenzie AS, Quigley TM (1986) Calculation of petroleum masses generated and expelled from source rocks. Org Geochem 10:235–245

    Article  CAS  Google Scholar 

  • Curtis JB (2002) Fractured shale-gas systems. AAPG Bull 86:1921–1938

    CAS  Google Scholar 

  • Curtis ME, Ambrose RJ, Sondergeld CH (2010) Structural characterization of gas shales on the micro-and nano-scales. In: Canadian unconventional resources and international petroleum conference. Society of Petroleum Engineers, Calgary, Alberta, Canada, pp 1–15

    Google Scholar 

  • Curtis ME, Ambrose RJ, Sondergeld CH, Rai CS (2011a) Investigation of the relationship between organic porosity and thermal maturity in the Marcellus Shale. Presented at N. Am. Unconv. Gas Conf. Exhib., June 14–16, The Woodlands, TX. https://doi.org/10.2118/144370-MS

  • Curtis ME, Ambrose RJ, Sondergeld CH, Rai CS (2011b) Transmission and scanning electron microscopy investigation of pore connectivity of gas shales on the nanoscale. Presented at N. Am. Unconv. Gas Conf. Exhib., June 14–16, The Woodlands, TX. https://doi.org/10.2118/144391-MS

  • Curtis ME, Ambrose RJ, Sondergeld CH, Rai CS (2012) Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. AAPG Bull 96:665–677

    Article  CAS  Google Scholar 

  • de Leeuw JW, Largeau C (1993) A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal and petroleum formation. In: Engel MH, Macko SA (eds) Organic geochemistry, principles and applications. Plenum Press, New York, pp 23–72

    Chapter  Google Scholar 

  • Desbois G, Urai JL, Houben ME, Sholokhova Y (2010) Typology,morphology and connectivity of pore space in claystones from reference site for research using BIB, FIB and cryo-SEM methods. EPJ Web Conf 6:22005. https://doi.org/10.1051/epjconf/20100622005

    Article  Google Scholar 

  • di Primio R (2002) Unraveling secondary migration effects through the regional evaluation of PVT data: a case study from Quadrant 25, NOCS. Org Geochem 33(6):643–653

    Article  Google Scholar 

  • di Primio R, Horsfield B (1997) Predicting the generation of heavy oils in carbonate/evaporitic environments using pyrolysis methods. Org Geochem 24(10–11):999–1016

    Google Scholar 

  • di Primio R, Horsfield B (2006) From petroleum-type organofacies to hydrocarbon phase prediction. AAPG Bull 90:1031–1058

    Article  CAS  Google Scholar 

  • di Primio R, Dieckmann V, Mills N (1998) PVT and phase behaviour analysis in petroleum exploration. Org Geochem 29(1–3):207–222

    Article  Google Scholar 

  • Dieckmann V, Schenk HJ, Horsfield B, Welte DH (1998) Kinetics of petroleum generation and cracking by programmed-temperature closed-system pyrolysis of Toarcian Shales. Fuel 77(1–2):23–31

    Article  CAS  Google Scholar 

  • Diessel CFK (2007) Utility of coal petrology for sequence stratigraphic analysis. Int J Coal Geol 70:3–34

    Article  CAS  Google Scholar 

  • Düppenbecker SJ, Horsfield B (1990) Compositional information for kinetic modelling and petroleum type prediction. Org Geochem 16(1–3):259–266

    Article  Google Scholar 

  • Elias R, Gelin F (2015) Vertical heterogeneity of kerogen and fluid compositions in the Vaca Muerta unconventional shale play and assessment of producible fluid composition and quality. In: International petroleum technology conference, Tenerife

    Google Scholar 

  • Energy Information Administration (EIA) (2017) Annual energy outlook 2017 with projections to 2050. Washington, DC: US Department of Energy

    Google Scholar 

  • England WA, Mackenzie AS, Mann DM, Quigley TM (1987) The movement and entrapment of petroleum fluids in the subsurface. J Geol Soc 144(2):327–347

    Article  CAS  Google Scholar 

  • Erdmann M, Horsfield B (2006) Enhanced late gas generation potential of petroleum source rocks via recombination reactions: evidence from the Norwegian North Sea. Geochim Cosmochim Acta 70:3943–3956

    Article  CAS  Google Scholar 

  • Espitalié J, Madec M, Tissot B (1980) Role of mineral matrix in kerogen pyrolysis: influence on petroleum generation and migration. AAPG Bull 64(1):59–66

    Google Scholar 

  • Fan L, Martin RB, Thompson JW, Atwood K, Robinson JR, Lindsay GF (2011) An integrated approach for understanding oil and gas reserves potential in eagle ford shale formation. Society of Petroleum Engineers. SPE Canadian Unconventional Resources Conference, Calgary, Alberta, CSUG/SPE 148751

    Google Scholar 

  • Fishman NS, Bereskin SR, Bowker KA, Cardott BJ, Chidsey TC, Dubiel RF, Enomoto CB, Harrison WB, Jarvie DM, Jenkins CL, LeFever JA, Li P, McCracken JN, Morgan CD, Nordeng SH, Nyahay RE, Schamel S, Sumner RL, Wray LL (2011) Gas shale/shale oil. In: Warwick PD (compiler) Unconventional energy resources – 2011 review. Natural Resources Research 20:288–301

    Google Scholar 

  • Gamero Diaz H, Lewis R, Miller CK (2013) sCore: a mineralogy based classification scheme for organic mudstones. In: SPE annual technical conference and exhibition, New Orleans, 30 Sept–2 Oct. https://doi.org/10.2118/166284-MS

  • Gasparik M, Bertier P, Gensterblum Y, Ghanizadeh A, Krooss BM, Littke R (2014) Geological controls on the methane storage capacity in organic-rich shales. Int J Coal Geol 123:34–51

    Article  CAS  Google Scholar 

  • Geel C, de Wit M, Booth P, Schulz H-M, Horsfield B (2015) Palaeo-environment, diagenesis and characteristics of Permian black shales in the Lower Karoo Supergroup flanking the Cape Fold Belt near Jansenville, eastern Cape, South Africa: implications for the shale gas potential of the Karoo Basin. S Afr J Geol 118(3):249–274

    Article  Google Scholar 

  • Hackley PC, Cardott BJ (2016) Application of organic petrography in North American shale petroleum systems: a review. Int J Coal Geol 163:8–51

    Article  CAS  Google Scholar 

  • Hammes U, Hamlin HS, Ewing TE (2011) Geological analysis of the Upper JurassicHaynesville Shale in east Texas and west Louisiana. AAPG Bull 95:1643–1666

    Article  Google Scholar 

  • Han Y (2016) Oil retention and migration in the Barnett, Posidonia, and Niobrara Shales. Ph.D Thesis, Technical University of Berlin. https://doi.org/10.14279/depositonce-5815

  • Han Y, Mahlstedt N, Horsfield B (2015) The Barnett Shale: compositional fractionation associated with intraformational petroleum migration, retention, and expulsion. AAPG Bull 99(12):2173–2202

    Article  Google Scholar 

  • Han Y, Horsfield B, Wirth R, Mahlstedt N, Bernard S (2017) Oil retention and porosity evolution in organic-rich shales. AAPG Bull 101(6):807–827

    Article  Google Scholar 

  • Han Y, Horsfield B, Mahlstedt N, Wirth R, Curry D, LaReau H (2018) Factors controlling source and reservoir characteristics in the Niobrara shale-oil system, Denver Basin. AAPG Bull (submitted)

    Google Scholar 

  • Hantschel T, Kauerauf AI (2009) Fundamentals of basin and petroleum systems modeling. Springer, Berlin/Heidelberg

    Google Scholar 

  • Hao F, Zou H (2013) Cause of shale gas geochemical anomalies and mechanisms for gas enrichment and depletion in high-maturity shales. Mar Pet Geol 44:1–12

    Article  CAS  Google Scholar 

  • Heath JE, Dewers TA, McPherson BJOL, Petrusak R, Chidsey TC et al (2011) Pore networks in continental and marine mudstones: characteristics and controls on sealing behavior. Geosphere 7:429–454

    Article  Google Scholar 

  • Hill RJ, Jarvie DM, Zumberge J, Henry M, Pollastro RM (2007) Oil and gas geochemistry and petroleum systems of the Fort Worth Basin. AAPG Bull 91:445–473

    Article  CAS  Google Scholar 

  • Horsfield B (1984) Pyrolysis studies and petroleum exploration. In: Brooks J, Welte DH (eds) Advances in petroleum geochemistry. Academic Press, London, pp 247–298

    Chapter  Google Scholar 

  • Horsfield B (1989) Practical criteria for classifying kerogens: some observations from pyrolysis–gas chromatography. Geochim Cosmochim Acta 53:891–901

    Article  CAS  Google Scholar 

  • Horsfield B, Douglas A (1980) The influence of minerals on the pyrolysis of kerogens. Geochim Cosmochim Acta 44(8):1119–1131

    Article  CAS  Google Scholar 

  • Horsfield B, Heckers J, Leythaeuser D, Littke R, Mann U (1991) A study of the Holzener Asphaltkalk, Northern Germany: observations regarding the distribution, composition and origin of organic matter in an exhumed petroleum reservoir. Mar Pet Geol 8:198–211

    Article  Google Scholar 

  • Horsfield B, Bharati S, Larter SR, Leistner F, Littke R, Schenk HJ, Dypvik H (1992a) On the atypical petroleum-generating characteristics of alginite in the Cambrian Alum Shale. In: Schidlowski M et al (eds) Early organic evolution: implications for mineral and energy resources. Springer, Berlin/Heidelberg, pp 257–266

    Chapter  Google Scholar 

  • Horsfield B, Schenk HJ, Mills N, Welte DH (1992b) An investigation of the in-reservoir conversion of oil to gas: compositional and kinetic findings from closed-system programmed-temperature pyrolysis. In: Eckardt C et al (eds) Advances in organic geochemistry 1991. Organic geochemistry, vol 19, pp 191–204

    Google Scholar 

  • Horsfield B, Leistner F, Hall K (2015) Microscale sealed vessel pyrolysis. In: Grice K (ed) Principles and practice of analytical techniques in geosciences. Royal society of chemistry detection science series no. 4. The Royal Society of Chemistry, Cambridge, pp 209–250

    Google Scholar 

  • Hübner A, Horsfield B, Kapp I (2013) Fact-based communication: the shale gas information Platform. Environ Earth Sci 70:3921–3925

    Article  Google Scholar 

  • International Energy Agency (IEA) (2012) Golden rules for a golden age of gas. World energy outlook special report on unconventionals. International Energy Agency, Paris

    Google Scholar 

  • Jarvie DM (2012a) Shale resource systems for oil and gas: part 1 – shale-gas resource systems. In: Breyer JA (ed) Shale reservoirs – Giant resources for the 21st century. AAPG memoir, vol 97, pp 69–87

    Google Scholar 

  • Jarvie DM (2012b) Shale resource systems for oil and gas: part 2 – shale-oil resource systems. In: Breyer JA (ed) Shale reservoirs – Giant resources for the 21st century. AAPG Memoir, vol 97, pp 89–119

    Google Scholar 

  • Jarvie DM, Claxton BL, Henk F, Breyer JT (2001) Oil and shale gas from the Barnett Shale, Fort Worth basin, Texas. AAPG National Convention, June 3–6, 2001, Denver, CO. AAPG Bull 85(13 (Supplement)):A100

    Google Scholar 

  • Jarvie DM, Hill RJ, Ruble TE, Pollastro RM (2007) Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull 91:475–499

    Article  Google Scholar 

  • Jenkins CD, Boyer CM (2008) Coalbed- and shale-gas reservoirs. J Pet Technol 60(2):92–99

    Article  Google Scholar 

  • Jones RW (1987) Organic facies. In: Brooks J, Welte DH (eds) Advances in Petroleum Geochemistry, vol 2. Academic Press, London, pp 1–90

    Google Scholar 

  • Katsube TJ, Williamson MA (1994) Effects of diagenesis on shale nano-pore structure and implications for sealing capacity. Clay Miner 29:451–461

    Article  CAS  Google Scholar 

  • Kelemen SR, Walters CC, Ertas D, Kwiatek LM, Curry DJ (2006) Petroleum expulsion part 2. Organic matter type and maturity effects on kerogen swelling bysolvents and thermodynamic parameters for kerogen from regular solution theory. Energy and Fuels 20(1):301–308

    Article  CAS  Google Scholar 

  • Kietzmann DA, Martín-Chivelet J, Palma RM, López-Gómez J, Lescano M, Concheyro A (2011) Evidence of precessional and eccentricity orbital cycles in a Tithonian source rock: the mid-outer carbonate ramp of the Vaca Muerta formation, northern Neuquén Basin, Argentina. AAPG Bull 95:1459–1474

    Article  Google Scholar 

  • Killops S, Killops V (2005) Introduction to organic geochemistry, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Krooss BM, Leythaeuser D, Lillack H (1993) Nitrogen-rich natural gases. Qualitative and quantitative aspects of natural gas accumulation in reservoirs. Erdöl Kohle Erdgas Petrochem 46:271–276

    Google Scholar 

  • Krüger M, van Berk W, Arning ET, Jiménez N, Schovsbo NH, Straaten N, Schulz H-M (2014) The biogenic methane potential of European gas shale analogues: results from incubation experiments and thermodynamic modelling. Int J Coal Geol 136:59–74

    Article  CAS  Google Scholar 

  • Kuhn P, di Primio R, Horsfield B (2010) Bulk composition and phase behaviour of petroleum sourced by the Bakken Formation of the Williston Basin. In: Vining BA, Pickering SC (eds) Petroleum geology: from mature basins to new frontiers – proceedings of the 7th petroleum geology conference, vol 7. Geological Society of London, London, pp 1065–1077

    Google Scholar 

  • Kuhn PP, di Primio R, Hill R, Lawrence JR, Horsfield B (2012) Three-dimensional modeling study of the low-permeability petroleum system of the Bakken Formation. AAPG Bull 96:1867–1897

    Article  Google Scholar 

  • Kuske S, Horsfield B, Michael GE, Jweda J, Song Y (2017) Geochemical factors controlling the phase behavior of in-situ petroleum fluids in the eagle ford shale. AAPG Bull (accepted)

    Google Scholar 

  • Landon SM, Longman MW, Luneau BA (2001) Hydrocarbon source rock potential of the upper Cretaceous Niobrara Formation, western interior seaway of the rocky mountain region. Mt Geol 38(1):1–18

    Google Scholar 

  • Largeau C, Casadevall E, Kadouri A, Metzger P (1984) Formation of Botryococcus-derived kerogens-comparative study of immature torbanites and of the extant alga Botryococcus braunii. Org Geochem 6:327–332

    Article  CAS  Google Scholar 

  • Larter SR (1984) Application of analytical pyrolysis techniques to kerogen characterization and fossil fuel exploration/exploitation. In: Voorhees K (ed) Analytical pyrolysis, methods and application. Butterworth, London, pp 212–275

    Chapter  Google Scholar 

  • Larter SR (1985) Integrated kerogen typing in the recognition and quantitative assessment of petroleum source rocks. In: Petroleum geochemistry in exploration of the Norwegian shelf. Norwegian petroleum society. Graham and Trotman, London, pp 269–285

    Chapter  Google Scholar 

  • Le Tran KJ, Connan J, van der Weide J (1974) Diagenesis of organic matter and occurrence of hydrocarbons and hydrogen sulfide in SW Aquitaine Basin (France): bull. Cent Rech Pau-SNPA 8:111–137

    Google Scholar 

  • Littke R, Rullkötter J (1987) Mikroskopische und makroskopische Unterschiede zwischen Profilen unreifen und reifen Posidonienschiefers aus der Hilsmulde. Facies 17(1):171–179

    Article  Google Scholar 

  • Littke R, Baker D, Leythaeuser D (1988) Microscopic and sedimentologic evidence for the generation and migration of hydrocarbons in Toarcian source rocks of different maturities. Org Geochem 13(1–3):549–559

    Article  CAS  Google Scholar 

  • Littke R, Baker DR, Rullkötter J (1997) Deposition of petroleum source rocks. In: Welte DH, Horsfield B, Baker DR (eds) Petroleum and basin evolution. Springer, Heidelberg, pp 271–333

    Chapter  Google Scholar 

  • Locklair RE, Sageman BB (2008) Cyclostratigraphy of the Upper Cretaceous Niobrara Formation, Western Interior, U.S.A.: a Coniacian–Santonian orbital timescale. Earth Planet Sci Lett 269:540–553

    Article  CAS  Google Scholar 

  • Lopatin NV, Zubairaev SL, Kos IM, Emets TP, Romanov EA, Malchikhina OV (2003) Unconventional oil accumulations in the Upper Jurassic Bazhenov Black Shale Formation, West Siberian Basin: a self-sourced reservoir system. J Pet Geol 26(2):225–244

    Article  CAS  Google Scholar 

  • Lorant F, Behar F (2002) Late generation of methane from mature kerogens. Energy Fuel 16:412–427

    Article  CAS  Google Scholar 

  • Loucks RG, Reed RM, Ruppel SC, Jarvie DM (2009) Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale. J Sediment Res 79:848–861

    Article  Google Scholar 

  • Loucks RG, Reed RM, Ruppel SC, Hammes U (2010) Preliminary classification of matrix pores in mudrocks. Transactions 60:435–441. Gulf Coast Association of Geological Society

    Google Scholar 

  • Loucks RG, Reed RM, Ruppel SC, Hammes U (2012) Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull 96:1071–1098

    Article  CAS  Google Scholar 

  • Lüning S, Craig J, Loydell DK, Štorch P, Fitches B (2000) Lower Silurian ‘hot shales’ in North Africa and Arabia: regional distribution and depositional model. Earth Sci Rev 49(1–4):121–200

    Article  Google Scholar 

  • Macquaker JH, Adams AE (2003) Maximizing information from fine-grained sedimentary rocks: an inclusive nomenclature for mudstones. J Sediment Res 73:735–744

    Article  CAS  Google Scholar 

  • Macquaker JHS, Taylor KG, Keller M, Polya D (2014) Compositional controls on early diagenetic pathways in fine-grained sedimentary rocks: implications for predicting unconventional reservoir attributes of mudstones. AAPG Bull 98:587–603

    Article  CAS  Google Scholar 

  • Mahlstedt N, Horsfield B (2012) Metagenetic methane generation in gas shales. I. Screening protocols using immature samples. Mar Pet Geol 31:27–42

    Article  CAS  Google Scholar 

  • Mahlstedt N, Horsfield B (2013) A new screening tool for the rapid evaluation of gas sorption capacity in shales. In: AAPG Hedberg conference, Beijing, 21–24 Apr

    Google Scholar 

  • Mahlstedt N, Horsfield B, Dieckmann V (2008) Second order reactions as a prelude to gas generation at high maturity. Org Geochem 39(8):1125–1129

    Article  CAS  Google Scholar 

  • Mahlstedt N, di Primio R, Horsfield B, Boreham CJ (2015) Multi-component kinetics and late gas potential of selected Cooper Basin source rocks. Record 2015/19. Geoscience Australia, Canberra, p 199. https://doi.org/10.11636/Record.12015.11019

    Book  Google Scholar 

  • Mahlstedt N, Horsfield B, Wilkes H, Poetz S (2016) Tracing the impact of fluid retention on bulk petroleum properties using nitrogen-containing compounds. Energy Fuel 30:6290–6305

    Article  CAS  Google Scholar 

  • Mahlstedt N, Noah M, Horsfield B (2017) Combining FT-ICR MS and pyrolysis to predict petroleum-type organofacies and evolving fluid physical properties. In: 28th international meeting on organic geochemistry (IMOG), Florence

    Google Scholar 

  • Mao J, Fang X, Lan Y, Schimmelmann A, Mastalerz M, Xu L, Schmidt-Rohr K (2010) Chemical and nanometer-scale structure of kerogen and its change during thermal maturation investigated by advanced solid-state 13C NMR spectroscopy. Geochim Cosmochim Acta 74:2110–2127

    Article  CAS  Google Scholar 

  • Mathia EJ, Bowen L, Thomas KM, Aplin AC (2016) Evolution of porosity and pore types in organic-rich, calcareous, Lower Toarcian Posidonia Shale. Mar Pet Geol 75:117–139

    Article  CAS  Google Scholar 

  • Montgomery CT, Smith MB (2010) Hydraulic fracturing: history of an enduring technology. J Pet Technol 26–32

    Article  CAS  Google Scholar 

  • Muscio GPA, Horsfield B, Welte DH (1991) Compositional changes in the macromolecular organic matter (kerogens, asphaltenes and resins) of a naturally matured source rock sequence from northern Germany as revealed by pyrolysis methods. In: DAC M (ed) Organic geochemistry advances and applications in the natural environment. Manchester University Press, Manchester/New York, pp 447–449

    Google Scholar 

  • Muscio G, Horsfield B, Welte DH (1994) Occurrence of thermogenic gas in the immature zone – implications from the Bakken in-source reservoir system. In: Telnæs N, van Graas G, Øygard K (eds) Advances in organic geochemistry 1993, Elsevier. Organic geochemistry 22(3–5): 461–476

    Google Scholar 

  • Mycke B, Michaelis W (1986) Lignin-derived molecular fossils from geological materials. Naturwissenschaften 73:731–734

    Article  CAS  Google Scholar 

  • Nelson PH (2009) Pore throat sizes in sandstones, tight sandstones, and shales. AAPG Bull 93:1–13

    Article  Google Scholar 

  • Oldenburg TBP, Brown M, Bennett B, Larter SR (2014) The impact of thermal maturity level on the composition of crude oils, assessed using ultra-high resolution mass spectrometry. Org Geochem 75:151–168

    Article  CAS  Google Scholar 

  • Orr WL (1986) Kerogen/asphaltene/sulfur relationships in sulfur-rich Monterey oils. Org Geochem 10:499–516

    Article  CAS  Google Scholar 

  • Passey QR, Creaney S, Kulla JB, Moretti FJ, Stroud JD (1990) A practical model for organic richness from porosity and resistivity logs. AAPG Bull 74(12):1777–1794

    CAS  Google Scholar 

  • Passey Q, Bohacs K, Esch W, Klimentidis R, Sinha S (2010) From oil-prone source rock to gas-producing shale reservoir – geologic and petrophysical characterization of unconventional shale-gas reservoirs. In: International oil and gas conference and exhibition in China. Society of Petroleum Engineers, Beijing, 8–10 June

    Google Scholar 

  • Pepper AS (1991) Estimating the petroleum expulsion behaviour of source rocks: a novel quantitative approach. In: England WA, Fleet AJ (eds) Petroleum migration. Geological society special publications, vol 59. Geological Society, London, pp 9–31

    Google Scholar 

  • Philp RP, Calvin M (1976) Possible origin for insoluble organic (kerogen) debris in sediments from insoluble cell-wall materials of algae and bacteria. Nature 262:134–136

    Article  CAS  Google Scholar 

  • Poelchau HS, Baker DR, Hantschel T, Horsfield B, Wygrala B (1997) Basin simulation and the design of the conceptual basin model. In: Welte DH, Horsfield B, Baker DR (eds) Petroleum and basin evolution. Springer, Heidelberg, pp 3–70

    Chapter  Google Scholar 

  • Poetz S, Horsfield B, Wilkes H (2014) Maturity-driven generation and transformation of acidic compounds in the organic-rich Posidonia shale as revealed by electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Energy and Fuels 28:4877–4888

    Article  CAS  Google Scholar 

  • Pollastro RM (2010) Natural fractures, composition, cyclicity, and diagenesis of the Upper Cretaceous Niobrara Formation, Berthoud Field, Colorado. The Mountain Geologist 47(4):135–149

    Google Scholar 

  • Powell TG (1984) Some aspects of the hydrocarbon geochemistry of a Middle Devonian Barrier-Reeef Complex, Western Canada. In: James G. Palacas (ed) Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks, 1984, AAPG Studies in Geology 18. https://doi.org/10.1306/St18443C4

  • Price LC, Ging T, Daws TA, Love A, Pawlewicz MJ, Anders DE (1984) Organic metamorphism in the Mississippian–Devonian Bakken shale, North Dakota portion of the Williston Basin. In: Woodward J, Meissner FF, Clayton JL (eds) Hydrocarbon source rocks in the greater Rocky Mountain region: Rocky Mountain Association of Geologists, pp 83–133

    Google Scholar 

  • Requejo AG, Allan J, Creaney S, Gray NR, Cole KS (1992) Aryl isoprenoids and diaromatic carotenoids in Paleozoic source rocks and oils from the Western Canada and Williston basins. Org Geochem 19:245–264

    Article  CAS  Google Scholar 

  • Robison CR (1997) Hydrocarbon source rock variability within the Austin Chalk and Eagle Ford Shale (Upper Cretaceous), East Texas, USA. Int J Coal Geol 34(3):287–305

    Article  CAS  Google Scholar 

  • Rogner HH (1997) An assessment of world hydrocarbon resources. Annu Rev Energy Environ 22:217–262

    Article  Google Scholar 

  • Romero AM, Philp RP (2012) Organic geochemistry of the Woodford Shale, Southeastern Oklahoma: how variable can shales be? AAPG Bull 96(3):493–517

    Article  CAS  Google Scholar 

  • Romero-Sarmiento MF, Rouzaud JN, Bernard S, Deldicque D, Thomas M, Littke R (2014) Evolution of Barnett Shale organic carbon structure and nanostructure as a function of increasing maturation. Org Geochem 71:7–16

    Article  CAS  Google Scholar 

  • Ross DJ, Bustin RM (2009) The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar Pet Geol 26:916–927

    Article  CAS  Google Scholar 

  • Rullkötter J, Michaelis W (1990) The structure of kerogen and related materials. A review of recent progress and future trends. In: Durand B, Behar F (eds) Advances in organic geochemistry 1989, part II: molecular geochemistry. Pergamon Press, Oxford, pp 829–852

    Google Scholar 

  • Rullkötter J, Leythaeuser D, Horsfield B, Littke R, Mann U, Müller PJ, Radke M, Schaefer RG, Schenk H-J, Schwochau K, Witte EG, Welte DH (1988) Organic matter maturation under influence of a deep intrusive heat source: a natural experiment for quantification of hydrocarbon generation and expulsion from a petroleum source rock (Toarcien shale, Northern Germany). In: Mattavelli L, Novelli L (eds) Advances in organic geochemistry 1987. Organic geochemistry edn. Pergamon Press, Oxford, pp 847–856

    Google Scholar 

  • Ruppert L, Sakurovs R, Blach TP, He L, Melnichenko YB et al (2013) A USANS/SANS study of the accessibility of pores in the Barnett shale to methane and water. Energy Fuel 27:772–779

    Article  CAS  Google Scholar 

  • Sandvik EI, Young WA, Curry DJ (1992) Expulsion from hydrocarbon sources: the role of organic absorption. Org Geochem 19(1–3):77–87

    Article  CAS  Google Scholar 

  • Santamaria-Orozco D, Horsfield B (2003) Gas generation potential of Upper Jurassic (Tithonian) source rocks in the Sonda de Campeche, Mexico. In: Bartollini C, Buffler RT, Brickwede RF (eds) The Circum-Gulf of Mexico and the Caribbean: hydrocarbons habitat, basin formation and plate tectonics. AAPG memoir, vol 79(15). AAPG, Tulsa, pp 349–363

    Google Scholar 

  • Schenk HJ, di Primio R, Horsfield B (1997a) The conversion of oil into gas in petroleum reservoirs. Part 1: comparative kinetic investigation of gas generation from crude oils of lacustrine, marine and fluviodeltaic origin by programmed-temperature closed-system pyrolysis. Org Geochem 26:467–481

    Article  CAS  Google Scholar 

  • Schenk H-J, Horsfield B, Krooß B, Schaefer RG, Schwochau K (1997b) Kinetics of petroleum formation and cracking. In: Welte DH, Horsfield B, Baker DR (eds) Petroleum and basin evolution. Springer, Heidelberg, pp 231–270

    Chapter  Google Scholar 

  • Schettler PD Jr, Parmely CR (1991) Contributions to total storage capacity in Devonian shales. In: SPE Eastern Regional Meeting, Lexington, Kentucky, October 22–25, 1991, SPE-23422-MS, 12 p. https://doi.org/10.2118/23422-MS

  • Schmid-Röhl A, Röhl H-J, Oschmann W, Frimmel A, Schwark L (2002) Palaeoenvironmental reconstruction of Lower Toarcian epicontinental black shales (Posidonia Shale, SW Germany): global versus regional control. Geobios 35:13–20

    Article  Google Scholar 

  • Schulz H-M, Biermann S, van Berk W, Krüger M, Straaten N, Bechtel A, Wirth R, Lüders V, Schovsbo NH, Crabtree S (2015) From shale oil to biogenic shale gas: retracing organic–inorganic interactions in the Alum Shale (Furongian–Lower Ordovician) in southern Sweden. AAPG Bull 99(5):927–956

    Article  Google Scholar 

  • Slatt RM, O’Brien NR (2011) Pore types in the Barnett and Woodford gas shales: contribution to understanding gas storage and migration pathways in fine-grained rocks. AAPG Bull 95:2017–2030

    Article  CAS  Google Scholar 

  • Smith MG, Bustin RM (1998) Production and preservation of organic matter during deposition of the Bakken Formation (Late Devonian and early Mississippian), Williston Basin. Paleogeogr Paleoclimatol Paléoecol 142(3–4):185–200

    Article  Google Scholar 

  • Sondergeld CH, Ambrose RJ, Rai CS, Moncrieff J (2010) Micro-structural studies of gas shales. Presented at Society of Petroleum Engineers unconventional gas conference, Pittsburgh, 23–25 Feb. https://doi.org/10.2118/131771-MS

  • Stainforth JG, Reinders JEA (1990) Primary migration of hydrocarbons by diffusion through organic matter networks, and its effect on oil and gas generation. Org Geochem 16(1–3):61–74

    Article  CAS  Google Scholar 

  • Stasiuk LD (1997) The origin of pyrobitumens in Upper Devonian Leduc Formation gas reservoirs, Alberta, Canada: an optical and EDS study of oil to gas transformation. Mar Pet Geol 14:915–929

    Article  CAS  Google Scholar 

  • Sykes R, Snowdon LR (2002) Guidelines for assessing the petroleum potential of coaly source rocks using Rock–Eval pyrolysis. Org Geochem 33:1441–1455

    Article  CAS  Google Scholar 

  • Tan J, Horsfield B, Mahlstedt N, Zhang J, di Primio R, Vu TAT, Boreham CJ, van Graas G, Tocher BA (2013) Physical properties of petroleum formed during maturation of Lower Cambrian shale in the upper Yangtze Platform, South China, as inferred from PhaseKinetics modelling. Mar Petrol Geol 48:47–56

    Article  Google Scholar 

  • Tegelaar EW, Matthezing RM, Jansen BH, Horsfield B, de Leeuw JW (1989) Possible origin of n-alkanes in high-wax crude oils. Nature 342(6249):529–531

    Article  CAS  Google Scholar 

  • Tissot BP, Welte DH (1978) Petroleum formation and occurence. Springer, Berlin

    Book  Google Scholar 

  • Tissot BP, Califet-Debyser Y, Deroo G, Oudin JL (1971) Origin and evolution of hydrocarbons in earlyToarcian shales, Paris Basin, France. AAPG Bull 55(12):2177–2193

    Google Scholar 

  • Tissot BP, Durand B, Espitalie J, Combaz A (1974) Influence of nature and diagenesis of organic matter in formation of petroleum. AAPG Bull 58:499–506

    CAS  Google Scholar 

  • Tissot BP, Pelet R, Ungerer P (1987) Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation. Bull Am Assoc Pet Geol 71:1445–1466

    CAS  Google Scholar 

  • Tourtelot HA (1979) Black shale – its deposition and diagenesis. Clay Clay Miner 27:313–321

    Article  Google Scholar 

  • Ungerer P (1990) State of the art of research in kinetic modelling of oil formation and expulsion. Org Geochem 16(1–3):1–25

    Article  CAS  Google Scholar 

  • Vetter A, Horsfield B (2014) Shale Gas Information Platform SHIP: unconventionals seen from a scientific point of view. Int Shale Gas Oil J 2(3):6–7

    Google Scholar 

  • Vu TAT, Horsfield B, Sykes R (2008) Influence of in-situ bitumen on the generation of gas and oil in New Zealand coals. Org Geochem 39(11):1606–1619

    Article  CAS  Google Scholar 

  • Vu TAT, Horsfield B, Mahlstedt N, Schenk HJ, Kelemen SR, Walters CC, Kwiatek PJ, Sykes R (2013) The structural evolution of organic matter during maturation of coals and its impact on petroleum potential and feedstock for the deep biosphere. Org Geochem 62:17–27

    Article  CAS  Google Scholar 

  • Walls JD, Sinclair SW (2011) Eagle Ford shale reservoir properties from digital rock physics. First Break 29:97–101

    Google Scholar 

  • Whitson CH, Sunjerga S (2012) PVT in liquid-rich shale reservoirs. Society of Petroleum Engineers. https://doi.org/10.2118/155499-MS

  • Wignall PB, Hallam A (1991) Biofacies, stratigraphic distribution and depositional models of British onshore Jurassic black shales. In: Tyson RV, Pearson TH (eds) Modern and ancient continental shelf anoxia, vol 58, Geological Society of London Publishing House, pp 291–309

    Google Scholar 

  • Wüst RAJ, Hackley PC, Nassichuk BR, Willment N, Brezovski R (2013) Vitrinite reflectance versus pyrolysis Tmax data: assessing thermal maturity in shale plays with special reference to the Duvernay shale play of the Western Canadian Sedimentary Basin, Alberta. SPE 167031. Society of Petroleum Engineers

    Google Scholar 

  • Yang S, Horsfield B (2016) Some predicted effects of minerals on the generation of petroleum in nature. Energy and Fuels 30(8):6677–6687

    Article  CAS  Google Scholar 

  • Yang S, Schulz HM, Horsfield B, Schovsbo NH, Panova E, Rothe H, Hahne K (2018) On the changing petroleum generation properties of Alum Shale over geological time caused by uranium irradiation. Geochim Cosmochim Acta 229:20–35

    Article  CAS  Google Scholar 

  • Ziegs V, Horsfield B, Skeie JE, Rinna J (2017) Petroleum retention in the Mandal Formation, Central Graben, Norway. Mar Pet Geol 83:195–214

    Article  CAS  Google Scholar 

  • Zumberge J, Ferworn K, Brown S (2012) Isotopic reversal (“rollover”) in shale gases produced from the Mississippian Barnett and Fayetteville formations. Mar Pet Geol 31:43–52

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Horsfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Horsfield, B., Schulz, HM., Bernard, S., Mahlstedt, N., Han, Y., Kuske, S. (2018). Oil and Gas Shales. In: Wilkes, H. (eds) Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-54529-5_18-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54529-5_18-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54529-5

  • Online ISBN: 978-3-319-54529-5

  • eBook Packages: Living Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics