Skip to main content

A Dual Adaptive Regularization Method to Remove Mixed Gaussian-Poisson Noise

  • Conference paper
  • First Online:
Computer Vision – ACCV 2016 Workshops (ACCV 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10116))

Included in the following conference series:

Abstract

The noise in low photon-counting imaging system can often be described as mixed Gaussian-Poisson noise. Regularization methods are required to replace the ill-posed image denoising problems with an approximate well-posed one. However, the sole constraint in non-adaptive regularization methods is harmful to a good balance between the noise-removing and detail-preserving. Meanwhile, most existing adaptive regularization methods were aimed at unitary noise model and dual adaptive regularization scheme remained scarce. Thus, we propose a dual adaptive regularization method based on local variance to remove the mixed Gaussian-Poisson noise in micro focus X-ray images. Firstly, we raise a new 3-step image segmentation scheme based on local variance. Then, a self-adaptive p-Laplace variation function is used as the regularization operator while the regularization parameter is adaptively obtained via a barrier function. Finally, experimental results demonstrate the superiority of the proposed method in suppressing noise and preserving fine details.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benvenuto, F., Camera, A.L., Theys, C., et al.: The study of an iterative method for the reconstruction of images corrupted by Poisson and Gaussian noise. Inverse Prob. 24(3), 35016–35020 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertalmío, M., Caselles, V., Rougé, B., et al.: TV based image restoration with local constraints. J. Sci. Comput. 19(1–3), 95–122 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bing, S.: Topics in variational PDE image segmentation, inpainting and denoising. PhD Thesis. University of California Los Angeles, USA (2003)

    Google Scholar 

  5. Blomgren, P., Chan, T.F., Mulet, P., et al.: Total variation image restoration: numerical methods and extensions. In: IEEE International Conference on Image Processing (ICIP), vol. 3, pp. 384–387 (1997)

    Google Scholar 

  6. Blomgren, P., Chan, T.F.: Modular solvers for image restoration problems using the discrepancy principle. Numer. Linear Algebra Appl. 9(5), 347–358 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  8. Chen, Q., Montesinos, P., Sun, Q.S., et al.: Adaptive total variation denoising based on difference curvature. Image Vis. Comput. 28(3), 298–306 (2010)

    Article  Google Scholar 

  9. Chen, D.Q., Cheng, L.Z.: Spatially adapted total variation model to remove multiplicative noise. IEEE Trans. Image Process. 21(4), 1650–1662 (2012)

    Article  MathSciNet  Google Scholar 

  10. Chen, D.Q., Cheng, L.Z.: Spatially adapted regularization parameter selection based on the local discrepancy function for Poissonian image deblurring. Inverse Prob. 28(1), 15004–15027 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, D.Q., Cheng, L.Z.: Fast linearized alternating direction minimization algorithm with adaptive parameter selection for multiplicative noise removal. J. Comput. Appl. Math. 257(2), 29–45 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dai, S., Xiang, H., Du, Z., et al.: Adaptive regularization of infrared image super-resolution reconstruction. In: International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–4 (2014)

    Google Scholar 

  13. Dong, Y., Hintermüller, M., Rincon-Camacho, M.M.: Automated regularization parameter selection in multi-scale total variation models for image restoration. J. Math. Imaging Vis. 40(1), 82–104 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fan, Z., Gao, R.X.: An adaptive total variation regularization method for electrical capacitance tomography. In: IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 2230–2235 (2012)

    Google Scholar 

  15. Gao, L., Li, C.: An adaptive TV model for image denoising. In: International Conference on Natural Computation (ICNC), pp. 766–770 (2013)

    Google Scholar 

  16. Geronimo, J.S., Hardin, D.P., Massopust, P.R.: Fractal functions and wavelet expansions based on several scaling functions. J. Approximation Theo. 78(3), 373–401 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Harmany, Z.T., Marcia, R.F., Willett, R.M.: This is SPIRAL-TAP: sparse poisson intensity reconstruction algorithms–theory and practice. IEEE Trans. Image Process. 21(3), 1084–1096 (2010)

    Article  MathSciNet  Google Scholar 

  18. Harmany, Z.T., Marcia, R.F., Willett, R.M.: SPIRAL out of convexity: sparsity-regularized algorithms for photon-limited imaging. In: SPIE - The International Society for Optical Engineering, vol. 7533, pp. 75330R–75330R-12 (2010)

    Google Scholar 

  19. Jeon, W., Yi, T.: Image restoration using dual adaptive regularization operators. In: IEEE International Conference on Pattern Recognition (ICPR), vol. 3, pp. 45–48 (2000)

    Google Scholar 

  20. Jezierska, A., Chouzenoux, E., Pesquet, J.C., et al.: A primal-dual proximal splitting approach for restoring data corrupted with Poisson-Gaussian noise. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1085–1088 (2012)

    Google Scholar 

  21. Lagendijk, R.L., Biemond, J., Boekee, D.E.: Regularized iterative image restoration with ring reduction. IEEE Trans. Acoust. Speech Signal Process. 36(12), 1874–1887 (1988)

    Article  MATH  Google Scholar 

  22. Li, J., Shen, Z., Yin, R., et al.: A reweighted \(l_2\) method for image restoration with Poisson and mixed Poisson-Gaussian noise. Inverse Prob. Imaging 9(3), 875–894 (2015)

    Article  MATH  Google Scholar 

  23. Luisier, F., Blu, T., Unser, M.: Image denoising in mixed Poisson-Gaussian noise. IEEE Trans. Image Process. 20(3), 696–708 (2011)

    Article  MathSciNet  Google Scholar 

  24. Makitalo, M., Foi, A.: Poisson-gaussian denoising using the exact unbiased inverse of the generalized anscombe transformation. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 1081–1084 (2012)

    Google Scholar 

  25. Morozov, V.A., Nashed, Z.: Methods for solving incorrectly posed problems. Springer, New York (2012)

    Google Scholar 

  26. Portilla, J., Strela, V., Wainwright, M.J.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003). IEEE Signal Processing Society

    Article  MathSciNet  MATH  Google Scholar 

  27. Rodriguez, P.: Total variation regularization for poisson vector-valued image restoration with a spatially adaptive regularization parameter selection. In: International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 402–407 (2011)

    Google Scholar 

  28. Rojas, R., Rodriguez, P.: Spatially adaptive total variation image denoising under Salt and Pepper noise. European Signal Processing Conference (EUSIPCO) 314–318(2011)

    Google Scholar 

  29. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D, Physica D: Nonlinear Phenomena 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Strong, D.M., Chan, T.F.: Spatially and scale adaptive total variation based regularization and anisotropic diffusion in image processing. Diffusion in Image Processing UCLA Math Department CAM Report (1996)

    Google Scholar 

  31. Strong, D.M., Aujol, J.F., Chan, T.F.: Scale recognition, regularization parameter selection, and Meyer’s G norm in total variation regularization. Multiscale Model. Simul. 5(1), 273–303 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tang, X.: Research of regularization method in image restoration. Huazhong University of Science and Technology (2006)

    Google Scholar 

  33. Tikhonov, A.N., Arsenin, V.Y.: Solution of ill-posed problems. Math. Comput. 32(144), 491–491 (1978)

    Google Scholar 

  34. Wen, Y., Chan, R.: Parameter selection for total-variation-based image restoration using discrepancy principle. IEEE Trans. Image Process. 21(4), 1770–1781 (2012)

    Article  MathSciNet  Google Scholar 

  35. Xu, Y., Song, X., Dong, F., et al.: An adaptive total variation regularization method for elec-trical resistance tomography. In: IEEE International Conference on Imaging Systems and Techniques (IST), pp. 127–131 (2013)

    Google Scholar 

  36. Yong, X., Fang, Y., Gao, X., et al.: An adaptive regularization image super-resolution reconstruction algorithm. In: Chinese Control Conference (CCC), pp. 7258–7262 (2014)

    Google Scholar 

  37. Yuan, Q., Yan, L., Li, J., et al.: Remote sensing image super-resolution via regional spatially adaptive total variation model. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3073–3076 (2014)

    Google Scholar 

  38. Zhang, H., Peng, Q.: Adaptive image denoising model based on total variation. Opt. Eng. 33(3), 50–53 (2006)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant 61403146 and the Fundamental Research Funds for the Central Universities (x2zd-D2155120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wu, Z., Gao, H., Ma, G., Wan, Y. (2017). A Dual Adaptive Regularization Method to Remove Mixed Gaussian-Poisson Noise. In: Chen, CS., Lu, J., Ma, KK. (eds) Computer Vision – ACCV 2016 Workshops. ACCV 2016. Lecture Notes in Computer Science(), vol 10116. Springer, Cham. https://doi.org/10.1007/978-3-319-54407-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54407-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54406-9

  • Online ISBN: 978-3-319-54407-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics