Skip to main content

Reflection Symmetry of Shapes Based on Skeleton Primitive Chains

  • Conference paper
  • First Online:
Book cover Analysis of Images, Social Networks and Texts (AIST 2016)

Abstract

In this paper the novel fast approach to identify the reflection symmetry axis of binary images is proposed. We propose to divide a skeleton of a shape into two parts – the “left” and the “right” sub-skeletons. The left part is traversed counterclockwise and the right one – in clockwise direction. As a result, the “left” and the “right” primitive sub-chains are achieved; they can be compared by the known shape matching procedure based on pair-wise alignment of primitive chains. So, the most similar parts of a skeleton among all possible ones correspond to the most similar parts of a figure which are considered as reflection symmetric parts. The start and the end points of skeleton division into “left” and “right” parts will be the points belonging to a symmetry axis of a figure. Also, the exact brute-force symmetry evaluation algorithm and two its optimizations are suggested for finding ground truth of symmetry axis. All proposed methods were experimentally tested on Flavia leaves dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arkin, E.M., Chew, L.P., Huttenlocher, D.P., Kedem, K., Mitchell, J.S.B.: An efficiently computable metric for comparing polygonal shapes. IEEE Trans. Pattern Anal. Mach. Intell. 13, 209–216 (1991)

    Article  MATH  Google Scholar 

  2. Blum, H.: A transformation for extracting new descriptors of shape. Models Percept. Speech Vis. Form 19(5), 362–380 (1967)

    Google Scholar 

  3. Kushnir, O., Seredin, O.: Parametric description of skeleton radial function by legendre polynomials for binary images comparison. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2014. LNCS, vol. 8509, pp. 520–530. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07998-1_60

    Google Scholar 

  4. Kushnir, O., Seredin, O.: Shape matching based on skeletonization and alignment of primitive chains. In: Khachay, M.Y., Konstantinova, N., Panchenko, A., Ignatov, D.I., Labunets, V.G. (eds.) AIST 2015. CCIS, vol. 542, pp. 123–136. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26123-2_12

    Chapter  Google Scholar 

  5. Latecki, L.J., Lakämper, R.: Convexity rule for shape decomposition based on discrete contour evolution. Comput. Vis. Image Underst. 73(3), 441–454 (1999)

    Article  Google Scholar 

  6. Ling, H., Jacobs, D.W.: Shape classification using inner-distance. IEEE Trans. PAMI 29, 286–299 (2007)

    Article  Google Scholar 

  7. Liu, J., et al.: Symmetry detection from realworld images competition: summary and results. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 200–205 (2013)

    Google Scholar 

  8. Sheynin, S., Tuzikov, A., Volgin, D.: Computation of symmetry measures for polygonal shapes. In: Solina, F., Leonardis, A. (eds.) CAIP 1999. LNCS, vol. 1689, pp. 183–190. Springer, Heidelberg (1999). doi:10.1007/3-540-48375-6_23

    Chapter  Google Scholar 

  9. van Otterloo, P.J.: A contour-oriented approach to digital shape analysis. Ph.D. thesis, Delft University of Technology, Delft, The Netherlands (1988)

    Google Scholar 

  10. Wu, S.G., Bao, F.S., Xu, E.Y., Wang, Y.-X., Chang, Y.-F., Xiang, Q.-L.: A leaf recognition algorithm for plant classification using probabilistic neural network. In: 2007 IEEE International Symposium on Signal Processing and Information Technology, pp. 11–16 (2007)

    Google Scholar 

  11. Yang, X., Adluru, N., Latecki, L.J., Bai, X., Pizlo, Z.: Symmetry of shapes via self-similarity. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008. LNCS, vol. 5359, pp. 561–570. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89646-3_55

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is partially supported by Russian Fund for Basic Research, Grants 14-07-00527 and 16-57-52042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olesia Kushnir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kushnir, O., Fedotova, S., Seredin, O., Karkishchenko, A. (2017). Reflection Symmetry of Shapes Based on Skeleton Primitive Chains. In: Ignatov, D., et al. Analysis of Images, Social Networks and Texts. AIST 2016. Communications in Computer and Information Science, vol 661. Springer, Cham. https://doi.org/10.1007/978-3-319-52920-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52920-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52919-6

  • Online ISBN: 978-3-319-52920-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics