Skip to main content

Basic Statistics and Clinical Studies in Radiation Oncology

  • Living reference work entry
  • First Online:
Radiation Oncology
  • 560 Accesses

Abstract

In moving to the principle of evidence based medicine especially for the efficacy in diagnosis and interventional treatment in the middle of the last century, the epoch of clinical trials started and with this, statistical standards are now part of the conditions in methodological and systematic scientific approach in treating patients and improve care. Following this principle in radiation oncology, evidence based medicine relies on data sampled in strongly defined populations showing explicit characteristics of certain diseases and of healthy controls, or controls not showing these characteristics. This approach is turning away from patient centered research focusing in single or small groups of patients and will in so far enhance the experience of clinicians. That does not mean that only prospective studies are in the focus, but also a systematic retrospective look back is of importance in gaining information.

The information in this section is split into two parts (i) basic medical statistics and (ii) main issues of clinical trials. Since it is far from being complete it should be taken as a small compendium for a first reading to inform interested oncologists in a condensed way about the key aspects in medical statistics and clinical trials in radiation oncology and should be taken as an introduction and aid for further reading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literature

  • Agresti A, Coull B. Approximate is better than ‘exact’ for interval estimation of binomial proportions. Am Stat. 1998;52:119–26.

    Google Scholar 

  • Al-Jundi A, Sakka S. Protocol writing in clinical research. J Clin Diagn Res. 2016;10(11):ZE10–3.

    PubMed  PubMed Central  Google Scholar 

  • Anglemyer A, Horvath HT, Bero L. Healthcare outcomes assessed with observational study designs compared with those assessed in randomized trials. Cochrane Database Syst Rev. 2014;4:MR000034.

    Google Scholar 

  • Antoniou M, Jorgensen AL, Kolamunnage-Dona R. Biomarker-guided adaptive trial designs in phase II and phase III: a methodological review. PLoS One. 2016;11(2):e0149803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Antoniou M, Kolamunnage-Dona R, Jorgensen A. Biomarker-guided non-adaptive trial designs in Phase II and Phase III: a methodological review. J Pers Med. 2017;7(1):pii:E1.

    Article  Google Scholar 

  • Austin PC. A tutorial on multilevel survival analysis: methods, models and applications. Int Stat Rev. 2017;85(2):185–203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Begley CG, Ellis LM. Drug development: raise standards for preclinical cancer research. Nature. 2012;483(7391):531–3.

    Article  PubMed  CAS  Google Scholar 

  • Berger ML, Martin BC, Husereau D, Worley K, Allen D, Yang W, Mullins CD, Kahler K, Quon NC, DevineS GJ, Cannon E, Crown W, on behalf of the ISPOR-AMCP-NPC Retrospective and Prospective Observational CER Task Forces. A questionnaire to assess the relevance and credibility of observational studies to inform health care decision making: an ISPOR-AMCP-NPC good practice task force report. Value Health. 2014;17(2):143–56.

    Article  PubMed  PubMed Central  Google Scholar 

  • Biau DJ, MD JBM, Porcher RP. Value and the theory of hypothesis testing: an explanation for new researchers. Clin Orthop Relat Res. 2010;468(3):885–92.

    Article  PubMed  Google Scholar 

  • Black N. Why we need observational studies to evaluate the effectiveness of health care. BMJ. 1996;312:1215–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bland M, Peacock J. Interpreting statistics with confidence. Obstet Gynaecol. 2002;4:176–80.

    Google Scholar 

  • Boers M. Add-on or step-up trials for new drug development in rheumatoid arthritis: a new standard? Arthritis Rheum. 2003;48(6):1481–3.

    Article  PubMed  Google Scholar 

  • Bolla M, Bartelink H, Garavaglia G, Gonzalez D, Horiot JC, Johansson KA, van Tienhoven G, Vantongelen K, van Glabbeke M. EORTC guidelines for writing protocols for clinical trials of radiotherapy. Radiother Oncol. 1995;36(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  • Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to meta-analysis. Oxford, UK: Wiley; 2009.

    Book  Google Scholar 

  • Bretz F, Schmidli H, Koenig F, Racine A, Maurer W. Confirmatory seamless phase II/III clinical trials with hypotheses selection at interim: general concepts (with discussion). Biom J. 2006;48:623–34.

    Article  PubMed  Google Scholar 

  • Bretz F, Koenig F, Brannath W, Glimm E, Posch M. Adaptive designs for confirmatory clinical trials. Stat Med. 2009;28:1181–217.

    Article  PubMed  Google Scholar 

  • Bucher HC, Guyatt GH, Griffith LE, Walter SD. The results of direct and indirect comparisons in meta-analysis of randomized controlled trials. J Clin Epidemiol. 1997;50:683–91.

    Article  PubMed  CAS  Google Scholar 

  • Burke JF, Sussman JB, Kent DM, Hayward RA. Three simple rules to ensure reasonably credible subgroup analyses. BMJ. 2015;351:h5651.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buyse M, Pedbois P. On the relationship between response to treatment and survival time. Stat Med. 1996;15:2797–812.

    Article  PubMed  CAS  Google Scholar 

  • Cameron IM, Scott NW, Adler M, Reid IC. A comparison of three methods of assessing differential item functioning (DIF) in the hospital anxiety depression scale: ordinal logistic regression, Rasch analysis and the mantel chi-square procedure. Qual Life Res. 2014;23(10):2883–8.

    Article  PubMed  Google Scholar 

  • Chan A, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin JA, Dickersin K, Hróbjartsson A, Schulz KF, Parulekar WR, Krleža-Jeric K, Laupacis A, Moher D. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Cui Y, Owonikoko TK, Wang Z, Li Z, Luo R, Kutner M, Khuri FR, Kowalski J. Escalation with overdose control using all toxicities and time to event toxicity data in cancer phase I clinical trials. Contemp Clin Trials. 2014;37(2):322–32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chevret S. Bayesian adaptive clinical trials: a dream for statisticians only? Statist Med. 2012;31:1002–13.

    Article  Google Scholar 

  • CHMP (Committee for Medicinal Products for Human Use). Points to consider on multiplicity issues in clinical trials. London: EMA; 2002. www.ema.europa.eu/ema/pages/includes/document/open_document.jsp?webContentId=WC500003640

    Google Scholar 

  • CHMP (Committee for Medicinal Products for Human Use). Reflection paper on methodological issues in confirmatory clinical trials planned with an adaptive design. London: EMA; 2007. www.ema.europa.eu/ema/pages/includes/document/open_document.jsp?webContentId=WC500003616

    Google Scholar 

  • CHMP (Committee for Medicinal Products for Human Use). Guideline on the evaluation of anticancer medicinal products in man. London: EMA; 2017. http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/general/general_content_001122.jsp&mid=WC0b01ac0580034cf3

    Google Scholar 

  • Choi H, Charnsangavej C, Faria SC, Macapinlac HA, Burgess MA, Patel SR, Chen LL, Podoloff DA, Benjamin RS. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with Imatinib Mesylate: proposal of new computed tomography response criteria. J Clin Oncol. 2007;25:1753–9.

    Article  PubMed  Google Scholar 

  • Chow SC, Chang M. Adaptive design methods in clinical trials. Boca Raton: Chapman & Hall/CRC; 2007.

    Google Scholar 

  • Chow SC, Liu J-P. Design and analysis of clinical trials. 2nd ed. New York: Wiley; 2004.

    Google Scholar 

  • Clopper CJ, Pearson ES. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika. 1934;26:404–13.

    Article  Google Scholar 

  • Cook TD, De Mets DL. Introduction to statistical methods for clinical trials. Boca Raton: Chapman & Hall/CRC; 2008.

    Google Scholar 

  • Crane M, Rissel C, Greaves S, Gebel K. Correcting bias in self-rated quality of life: an application of anchoring vignettes and ordinal regression models to better understand QoL differences across commuting modes. Qual Life Res. 2016;25(2):257–66.

    Article  PubMed  Google Scholar 

  • Crowley J, Ankerst DP, editors. Handbook of statistics in oncology. 2nd ed. Boca Raton: Chapman & Hall/CRC Press; 2006.

    Google Scholar 

  • D’Agostino RBD, Belanger A, D’Agostino RBD Jr. A suggestion for using powerful and informative tests of normality. Am Stat. 1990;44(4):316–21.

    Google Scholar 

  • DeMets DL. Current development in clinical trials: issues old and new. Statist Med. 2012;31:2944–54.

    Article  Google Scholar 

  • DeMets DL, Pocock SJ, Julian DG. The agonising negative trend in monitoring of clinical trials. Lancet. 1999;354:1983–8.

    Article  PubMed  CAS  Google Scholar 

  • Detry MA, Lewis RJ. The intention-to-treat principle: how to assess the true effect of choosing a medical treatment. JAMA. 2014;312(1):85–6.

    Article  PubMed  CAS  Google Scholar 

  • Du Prel J-B, Röhrig B, Hommel G, Blettner M. Choosing statistical tests. Dtsch Arztebl Int. 2010;107(19):343–8.

    PubMed  PubMed Central  Google Scholar 

  • Dumas-Mallet E, Smith A, Boraud T, Gonon F. Poor replication validity of biomedical association studies reported by newspapers. PLoS One. 2017;12(2):e0172650.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edeline J, Boucher E, Rolland Y, Vauléon E, Pracht M, Perrin C, Le Roux C, Raoul JL. Comparison of tumor response by response evaluation criteria in solid tumors (RECIST) and modified RECIST in patients treated with sorafenib for hepatocellular carcinoma. Cancer. 2012;118:147–56.

    Article  PubMed  CAS  Google Scholar 

  • Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J. New response evaluation criteria in solid tumors: revised RECIST guideline (version 1.1). Euro J Cancer. 2009;45:228–47.

    Article  CAS  Google Scholar 

  • Eldridge SM, Lancaster GA, Campbell MJ, Thabane L, Hopewell S, Coleman CL, Bond CM. Defining feasibility and pilot studies in preparation for randomised controlled trials: development of a conceptual framework. PLoS One. 2016;11(3):e0150205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elsäßer A, Regnstrom J, Vetter T, Koenig F, Hemmings RJ, Greco M, Papaluca-AmatiI M, Posch M. Adaptive clinical trial designs for European marketing authorization: a survey of scientific advice letters from the European medicines agency. Trials. 2014;15:383.

    Article  PubMed  PubMed Central  Google Scholar 

  • European Medicines Agency. ICH topic E8: note for guidance on general considerations for clinical trials. CPMP/ICH/291/95. London. 1998. http://www.ich.org/products/guidelines/efficacy/article/efficacy-guidelines.html

  • European Medicines Agency. ICH topic E9: Estimands and sensitivity analysis in clinical trials, E9(R1), current step 2 version, June 16th, 2017. London. 2017. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E9/E9-R1EWG_Step2_Guideline_2017_0616.pdf

  • FDA. Guidance for industry. Clinical trial endpoints for the approval of cancer drugs and biologics. Rockville: US Department of Health and Human Services; 2007. https://www.fda.gov/downloads/Drugs/Guidances/ucm071590.pdf

    Google Scholar 

  • FDA. Guidance for industry. Guidance for industry. Patient-reported outcome measures: use in medical product development to support labeling claims. Draft guidance. Rockville: US Department of Health and Human Services; 2009. https://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/default.htm

    Google Scholar 

  • FDA. Submission of quality metrics data. Guidance for Industry. Rockville: US Department of Health and Human Services; 2016. https://www.fda.gov/downloads/drugs/guidances/ucm455957.pdf

    Google Scholar 

  • Fleming TR. Surrogate endpoints and FDA’s accelerated approval process. Health Aff. 2005;24:67–78.

    Article  Google Scholar 

  • Fossâ SD, Skovlund E. Interim analyses in clinical trials: why do we plan them? J Clin Oncol. 2000;18:4007–8.

    Article  PubMed  Google Scholar 

  • Franklin JM, Dejene S, Huybrechts KF, Wang SV, Kulldorff M, Rothman KJ. A bias in the evaluation of bias comparing randomized trials with nonexperimental studies. Epidem Method. 2017. https://doi.org/10.1515/em-2016-0018. (in press)

  • Friedman LM, Furberg CD, DeMets DL. Fundamentals of clinical trials. 5th ed. New York: Springer; 2015.

    Book  Google Scholar 

  • Gan HK, You B, Pond GR, Chen EX. Assumptions of expected benefits in randomized phase III trials evaluating systemic treatments for cancer. J Natl Cancer Inst. 2012;104(8):590–8.

    Article  PubMed  Google Scholar 

  • Glasziou P, Chalmers I, Rawlins M, McCulloch P. When are randomised trials unnecessary? Picking signal from noise. BMJ. 2007;334:349–51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Greco T, Zangrillo A, Biondi-Zoccai G, Landoni G. Meta-analysis: pitfalls and hints. Heart Lung Vessel. 2013;5(4):219–25.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Green SJ, Pauler DK. Statistics in clinical trials. Curr Oncol Rep. 2004;6(1):36–41.

    Article  PubMed  Google Scholar 

  • Green S, Benedetti J, Crowley J. Clinical trials in oncology. London: Chapman & Hall; 1997.

    Book  Google Scholar 

  • Guédé D, Reigner B, Vandenhende F, Derks M, Beyer U, Jordan P, Worth E, Diack C, Frey N, Peck R. Bayesian adaptive designs in single ascending dose trials in healthy volunteers. Br J Clin Pharmacol. 2014;78(2):393–400.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta SK. Intention-to-treat concept: a review. Pers Clin Res. 2011;2:109–12.

    Article  Google Scholar 

  • Hollen PJ, Gralla RJ, Cox C, Eberly SW, Kris MG. A dilemma in analysis: issues in the serial measurement of quality of life in patients with advanced lung cancer. Lung Cancer. 1997;18(2):119–36.

    Article  PubMed  CAS  Google Scholar 

  • Iasonos A, O’Quigley J. Adaptive dose-finding studies: a review of model-guided phase I clinical trials. J Clin Oncol. 2014;32(23):2505–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobsen JC, Gluud C, Wetterslev J, Winkel P. When and how should multiple imputation be used for handling missing data in randomised clinical trials – a practical guide with flowcharts. BMC Med Res Methodol. 2017;17(1):162.

    Article  Google Scholar 

  • Jansen JP, Trikalinos T, Cappeleri JC, Daw J, Andes S, Eldessouki R, Salanti G. Indirect treatment comparison/network meta-analysis study questionnaire to assess relevance and credibility to inform health care decision making: an ISPOR-AMCP-NPC good practice task force report. Value Health. 2014;17:157–73.

    Article  PubMed  Google Scholar 

  • Jennison C, Turnbull BW. Group sequential methods with applications to clinical trials. Boca Raton: Chapman & Hall; 2000.

    Google Scholar 

  • Jennison C, Turnbull BW. Confirmatory seamless phase II/III clinical trials with hypothesis selection at interim: opportunities and limitations. Biom J. 2006;48:650–5.

    Article  Google Scholar 

  • Johnson PD, Besselsen DG. Practical aspects of experimental design in animal research. ILAR J. 2002;43(4):202–6.

    Article  PubMed  CAS  Google Scholar 

  • Karnofsky DA, Abelmann WH, Craver LF, Burchenal JH. The use of the nitrogen mustards in the palliative treatment of carcinoma – with particular reference to bronchogenic carcinoma. Cancer. 1948;1(4):634–56.

    Article  Google Scholar 

  • Koul R, Tse R, Karreman E, Dubey A, Tai P. Overall quality of life assessment in the patients undergoing external beam radiation in outpatient radiation oncology department. Int J Hematol Oncol Stem Cell Res. 2015;9(3):122–7.

    PubMed  PubMed Central  Google Scholar 

  • Kunz R, Khan KS, Kleinjen J, Antes G. Systematische Übersichtsarbeiten und Meta-Analysen. Bern: Huber; 2009.

    Google Scholar 

  • Laenen A, Alonso A. The functional living index-cancer: estimating its reliability based on clinical trial data. Qual Life Res. 2010;19(1):103–9.

    Article  PubMed  Google Scholar 

  • Lai TL, Lavori PW, Shih M-L. Adaptive trial designs. Annu Rev Pharmacol Toxicol. 2012;52:101–10.

    Article  PubMed  CAS  Google Scholar 

  • Le Tourneau C, Lee JJ, Siu LL. Dose escalation methods in phase I cancer clinical trials. J Natl Cancer Inst. 2009;101(10):708–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leon AC, Davis LL, Kraemer HC. The role and interpretation of pilot studies in clinical research. J Psychiatr Res. 2011;45(5):626–9.

    Article  PubMed  Google Scholar 

  • Lewis JA, Facey KM. Statistical shortcomings in licensing applications. Stat Med. 1998;17:1663–73.

    Article  PubMed  CAS  Google Scholar 

  • Lin L, Chu H. Quantifying publication bias in meta-analysis. Biometrics. 2017. https://doi.org/10.1111/biom.12817. (in print)

  • Little RL, D’Agostino R, Cohen ML, Dickersin K, Emerson SS, Farrar JT, Frangakis C, Hogan JW, Molenberghs G, Murphy SA, Neaton JD, Rotnitzky A, Scharfstein D, Shih WJ, Siegel JP, Stern H. The prevention and treatment of missing data in clinical trials. N Engl J Med. 2012;367:1355–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mandrekar SJ, Sargent DJ. Randomized phase II trials. J Thorac Oncol. 2010;5(7):932–4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuyama Y. A comparison of the results of intent-to-treat, per-protocol, and g-estimation in the presence of non-random treatment changes in a time-to-event non-inferiority trial. Stat Med. 2010;29(20):2107–16.

    Article  PubMed  Google Scholar 

  • Matthews RA. Methods for assessing the credibility of clinical trial outcomes. Drug Inf J. 2001;35:1469–78.

    Article  Google Scholar 

  • Mavridis D, Salanti G. Exploring and accounting for publication bias in mental health: a brief overview of methods. Evid Based Ment Health. 2014;17(1):11–5.

    Article  PubMed  Google Scholar 

  • Moher D, Schulz KF, Altman DG, for the CONSORT Group. The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials. Ann Intern Med. 2001;134:657–62.

    Article  PubMed  CAS  Google Scholar 

  • Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62:1006–12.

    Article  PubMed  Google Scholar 

  • Moore CG, Carter RE, Nietert PJ, Stewart PW. Recommendations for planning pilot studies in clinical and translational research. Clin Transl Sci. 2011;4(5):332–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moyé LA. Multiple analyses in clinical trials: fundamentals for investigators. New York: Springer; 2003.

    Google Scholar 

  • Nottage M, Siu L. Principles of clinical trial design. J Clin Oncol. 2002;20(Suppl 15):42s–6s.

    PubMed  Google Scholar 

  • Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET, Carbone PP. Toxicity and response criteria of the eastern cooperative oncology group. Am J Clin Oncol. 1982;5(6):649–55.

    Article  PubMed  CAS  Google Scholar 

  • Oron AP, Azriel D, Hoff PD. Dose-finding designs: the role of convergence properties. Int J Biostat. 2011;27(7):39.

    Google Scholar 

  • Osoba D. Health-related quality of life and cancer clinical trials. Ther Adv Med Oncol. 2011;3(2):57–71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Piantadosi S. Clinical trials: a methodological perspective. 2nd ed. New York: Wiley; 2005.

    Book  Google Scholar 

  • Pilz LR, Manegold C. Endpoints in lung cancer trials: today’s challenges for clinical statistics. MEMO. 2013;6:92–7.

    Article  Google Scholar 

  • Pilz LR, Manegold C, Schmid-Bindert G. Statistical considerations and endpoints for clinical lung cancer studies: can progression free survival (PFS) substitute overall survival (OS) as a valid endpoint in clinical trials for advanced non-small-cell lung cancer? Transl Lung Cancer Res. 2012;1:26–35.

    PubMed  PubMed Central  Google Scholar 

  • Pilz LR, Abel U, Pritsch M. Biometrie. In: Wannenmacher M, Wenz F, Debus J, editors. Strahlentherapie. 2nd ed. Berlin/Heidelberg: Springer; 2013. p. 353–70.

    Chapter  Google Scholar 

  • Pocock SJ. Clinical trials – a practical approach. Chichester: Wiley; 1983.

    Google Scholar 

  • PRISMA: Transparent reporting of systematic reviews and meta-analyses. The PRISMA Group (2009). http://www.prisma-statement.org

  • Rodrigues FB, Duarte GS, Costa J, Ferreira JJ, Wild EJ. Meta-research metrics matter: letter regarding article “indirect tolerability comparison of Deutetrabenazine and Tetrabenazine for Huntington disease”. J Clin Mov Disord. 2017;4:19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenberger WF, Lachin JM. Randomization in clinical trials: theory and practice. New York: Wiley; 2002.

    Book  Google Scholar 

  • Sackett DL. Was ist Evidenz-basierte Medizin? Editorial. In: Perleth M, Antes G, editors. Evidenzbasierte Medizin. Wissenschaft im Praxisalltag. München: MMV Medizin Verlag; 1998. p. 9–12.

    Google Scholar 

  • Sanchez M, Chen X. Choosing the analysis population in non-inferiority studies: per protocol or intent-to-treat. Stat Med. 2006;25(7):1169–81.

    Article  Google Scholar 

  • Savović J, Jones H, Altman D, Harris R, Jűni P, Pildal J, Als-Nielsen B, Balk E, Gluud C, Gluud L, Ioannidis J, Schulz K, Beynon R, Welton N, Wood L, Moher D, Deeks J, Sterne J. Influence of reported study design characteristics on intervention effect estimates from randomised controlled trials: combined analysis of meta-epidemiological studies. Health Technol Assess. 2012;16(35):1–82.

    Article  PubMed  Google Scholar 

  • Schipper H, Clinch J, McMurray A, Levitt M. Measuring the quality of life of cancer patients: the functional living index-cancer: development and validation. J Clin Oncology. 1984;2(5):472–83.

    Article  CAS  Google Scholar 

  • Schrimpf D, Pilz LR. Adaptive randomization procedures for the web-based randomization system RANDI2. Int J Clin Pharmacol Ther. 2012;52:85–6.

    Article  Google Scholar 

  • Schrimpf D, Plotnicki L, Pilz LR. Choice and simulation of the randomization procedure for clinical trials. Int J Clin Pharmacol Ther. 2011;49:91–2.

    PubMed  CAS  Google Scholar 

  • Schrimpf D, Manegold C, Pilz LR. Design of clinical studies: adaptive randomization and progression-free survival (PFS) as an endpoint in clinical studies of advanced non-small cell lung cancer (NSCLC). Int J Clin Pharmacol Ther. 2013;52:84–6.

    Article  Google Scholar 

  • Schumacher M, Schulgen G. Methodik klinischer Studien. 3rd ed. New York/Heidelberg: Springer; 2008.

    Book  Google Scholar 

  • Sedgwick P. What is publication bias in a meta-analysis? BMJ. 2015;351:h4419.

    Article  PubMed  Google Scholar 

  • Seymour L, Ivy SP, Sargent D, Spriggs D, Baker L, Rubenstein L, Ratein MJ, LeBlanc M, Stewart D, Crowley J, Groshan S, Humphrey JS, West P, Berry D. The design of phase II clinical trials testing cancer therapeutics: consensus recommendations from the clinical trial design task force of the national cancer institute investigational drug steering committee. Clin Cancer Res. 2010;16:1764–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song F, Parekh S, Hooper L, Loke YK, Ryder J, Sutton AJ, Hing C, Kwok CS, Pang C, Harvey I. Dissemination and publication of research findings: an updated review of related biases. Health Technol Assess. 2010;14(8):iii, ix–xi, 1–193.

    Google Scholar 

  • Spitzer WO, Dobson AJ, Hall J, Chesterman E, Levi J, Shepherd R, Battista RN, Catchlove BR. Measuring the quality of life of cancer patients: a concise QL-index for use by physicians. J Chronic Dis. 1981;34(12):585–97.

    Article  PubMed  CAS  Google Scholar 

  • Storer BE. Design and analysis of phase I trials. Biometrics. 1989;45(3):925–37.

    Article  PubMed  CAS  Google Scholar 

  • Suvarna V. Phase IV of drug development. Pers Clin Res. 2010;1(2):57–60.

    Google Scholar 

  • Tang PA, Bentzen SM, Chen EX, Siu LL. Surrogate endpoints for overall survival in metastatic colorectal cancer: literature-based analysis from 39 randomized controlled trials of first-line chemotherapy. J Clin Oncol. 2007;29:4562–8.

    Article  Google Scholar 

  • Tanniou J, van der Tweel I, Teerenstra S, Roes KCB. Subgroup analyses in confirmatory clinical trials: time to be specific about their purposes. BMC Med Res Methodol. 2016;16:20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tickle-Degnen L. Nuts and bolts of conducting feasibility studies. Am J Occup Ther. 2013;67(2):171–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verdam MGE, Oort FJ, Sprangers MAG. Item bias detection in the hospital anxiety and depression scale using structural equation modeling: comparison with other item bias detection methods. Qual Life Res. 2017;26(6):1439–50.

    Article  PubMed  Google Scholar 

  • Vyas D, Balakrishnan A, Vyas A. The value of the p-value. Am J Robot Surg. 2015;2(1):53–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang M, Dignam JJ, Zhang QE, DeGroot JF, Mehta MP, Hunsberger S. Integrated phase II/III clinical trials in oncology: a case study. Clin Trials. 2012;9:741–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wassertheil-Smoller S, Smoller J. Biostatistics and epidemiology. A primer for health and biomedical professionals. Berlin/Heidelberg: Springer; 2015.

    Google Scholar 

  • Wheeler GM, Sweeting MJ, Mander AP. Toxicity-dependent feasibility bounds for the escalation with overdose control approach in phase I cancer trials. Stat Med. 2017;36(16):2499–513.

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitehead AL, Sully BG, Campbell MJ. Pilot and feasibility studies: is there a difference from each other and from a randomised controlled trial? Contemp Clin Trials. 2014;38(1):130–3.

    Article  PubMed  Google Scholar 

  • Wilson SR, Burden C. Biometrics, vol. 1. Oxford, UK: EOLSS Publishers/UNESCO; 2009.

    Google Scholar 

  • Wong KM, Capasso A, Eckhardt SG. The changing landscape of phase I trials in oncology. Nat Rev Clin Oncol. 2016;13(2):106–17.

    Article  PubMed  CAS  Google Scholar 

  • Yao B, Zhu L, Jiang Q, Xia HA. Safety monitoring in clinical trials. Pharmaceutics. 2013;5(1):94–106.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar R Pilz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pilz, L.R. (2018). Basic Statistics and Clinical Studies in Radiation Oncology. In: Wenz, F. (eds) Radiation Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-52619-5_57-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52619-5_57-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52619-5

  • Online ISBN: 978-3-319-52619-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics