Skip to main content

Decay of the Cosmic Vacuum Energy

  • Chapter
  • First Online:

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 187))

Abstract

In his 2005 review, Gravity and the Thermodynamics of Horizons, Paddy suggested that a vacuum in thermal equilibrium with a bath of radiation should have a gradually diminishing energy. We work through the consequences of this scenario, and find that a coupling between the vacuum and a bath of black-body radiation at the temperature of the horizon requires the Hubble rate, H, to approach the same type of evolution as in the “intermediate inflation” scenario, with \(H\propto t^{-1/3}\), rather than as a constant. We show that such behaviour does not conflict with observations when the vacuum energy is described by a slowly-rolling scalar field, and when the fluctuations in the scalar field are treated as in the “warm inflation” scenario. It does, however, change the asymptotic states of the universe. We find that the existence of the radiation introduces a curvature singularity at early times, where the energy densities in both the radiation and the vacuum diverge. Furthermore, we show that the introduction of an additional non-interacting perfect fluid into the space-time reveals that radiation can dominate over dust at late times, in contrast to what occurs in the standard cosmological model. Such a coupling can also lead to a negative vacuum energy becoming positive.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L.P. Grishchuk, Lett. Nuovo Cim. 12, 60 (1975)

    Google Scholar 

  2. J. Haro, E. Elizalde, J. Phys. A 41, 372003 (2008)

    Google Scholar 

  3. L. Parker, D. Toms, Quantum Field Theory in Curved Spacetime (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  4. T. Padmanabhan, Phys. Rep. 406, 49 (2005)

    Google Scholar 

  5. J.D. Barrow, E.J. Copeland, A.R. Liddle, Mon. Not. R. Astron. Soc. 253, 675 (1991)

    Google Scholar 

  6. R.-G. Cai, S.P. Kim, JHEP 0502, 050 (2005)

    Google Scholar 

  7. G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 2738 (1977)

    Google Scholar 

  8. J.D. Barrow, Phys. Lett. B 235, 40 (1990)

    Google Scholar 

  9. J.D. Barrow, A.R. Liddle, C. Pahud, Phys. Rev. D 74, 127305 (2006)

    Google Scholar 

  10. A.G. Muslimov, Class. Quantum Gravity 7, 231 (1990)

    Google Scholar 

  11. A.A. Starobinsky, JETP Lett. 82, 169 (2005)

    Google Scholar 

  12. J.D. Barrow, J. Magueijo, Phys. Rev. D 88, 103525 (2013); J.D. Barrow, M. Lagos, J. Magueijo, Phys. Rev. D 89, 083525 (2014)

    Google Scholar 

  13. J.D. Barrow, P. Saich, Phys. Lett. B 249, 406 (1990)

    Google Scholar 

  14. J.D. Barrow, A.R. Liddle, Phys. Rev. D 47, 5219(R) (1993)

    Google Scholar 

  15. L.M. Krauss, R.J. Scherrer, Phys. Rev. D 75, 083524 (2007)

    Google Scholar 

  16. A. Berera, M. Gleiser, R.O. Ramos, Phys. Rev. D 58, 123508 (1998)

    Google Scholar 

  17. A. Berera, Nucl. Phys. B 585, 666 (2000)

    Google Scholar 

  18. L.M.H. Hall, I.G. Moss, A. Berera, Phys. Rev. D 69, 083525 (2004)

    Google Scholar 

  19. M. Bastero-Gil, A. Berera, Int. J. Mod. Phys. A 24, 2207 (2009)

    Google Scholar 

  20. S. Bartrum et al., Phys. Lett. B 732, 116 (2014)

    Google Scholar 

  21. R.O. Ramos, L.A. da Silva, JCAP 03, 032 (2013)

    Google Scholar 

  22. M. Bastero-Gil et al., JCAP 05, 004 (2014)

    Google Scholar 

  23. P.A.R. Ade et al., (Planck Collaboration). Astron. Astrophys. 571, A22 (2014)

    Google Scholar 

  24. P.A.R. Ade et al., (BICEP-2 Collaboration). Phys. Rev. Lett. 112, 241101 (2014)

    Google Scholar 

  25. X. Cheng, Adv. Astron. (special issue) 2010, 638979 (2010)

    Google Scholar 

  26. M. Bastero-Gil, A. Berera, I.G. Moss, R.O. Ramos, JCAP 12, 008 (2014)

    Google Scholar 

  27. J. Maldacena, C. Nunez, Int. J. Mod. Phys. A 16, 822 (2001); B. de Wit, D.J. Smit, N.D. Hari Dass, Nucl. Phys. B 283, 165 (1987)

    Google Scholar 

Download references

Acknowledgements

We are grateful to J. Lidsey, A. Linde and D. Mulryne for helpful discussions. TC and JDB are both supported by the STFC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Clifton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Clifton, T., Barrow, J.D. (2017). Decay of the Cosmic Vacuum Energy. In: Bagla, J., Engineer, S. (eds) Gravity and the Quantum. Fundamental Theories of Physics, vol 187. Springer, Cham. https://doi.org/10.1007/978-3-319-51700-1_6

Download citation

Publish with us

Policies and ethics