Skip to main content

Calculations with the Finite Element Method During the Design Ballistic Armour

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

For protection against projectiles with higher impact speed (up to 1000 m/s) a type of a ballistic sandwich shield can be used—which is a monolithic combination of ballistic laminates with additional materials, typically hard layers made of ceramic in the form of plates or spheres of oxides, carbides and nitrides. The authors of this paper, by using FEM to optimize defined material sets to fire the cartridge 7.62 × 54R mm, give a range of results which are compared with tests of ballistic firing on the shooting range.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wisniewski A (2001) Pancerze budowa, projektowanie i badania. WNT, Warszawa (in Polish).

    Google Scholar 

  2. Bocian M, Jamroziak K, Kosobudzki M (2014) The Analysis of Energy Consumption of a Ballistic Shields in Simulation of Mobile Cellular Automata. Advanced Materials Research. doi:http://10.4028/www.scientific.net/AMR.1036.680.

    Google Scholar 

  3. Grujicic M et al (2009) Material Modeling and Ballistic-Resistance Analysis of Armor-Grade Composites Reinforced with High-Performance Fibers. JMEPEG. doi:10.1007/s11665-009-9370-5.

  4. Jamroziak K (2013) An identification of the material properties in the terminal ballistic. Wroclaw University of Technology Publishing House, Wroclaw.

    Google Scholar 

  5. Barcikowski M, Semczyszyn B (2011) Impact damage in polyester-matrix glass fibre-reinforced composites. Part I. Impact damage extent. Composites 11(3):230–234.

    Google Scholar 

  6. Bocian M, Jamroziak K, Kosobudzki M (2015) Analysis of Material Punching Including a Rotational Speed of the Projectile. Solid State Phenomena. doi:10.4028/www.scientific.net/SSP.220-221.571.

  7. Soykasap O, Colakoglu M (2010) Ballistic Performance of a Kevlar-29 Woven Fibre Composite Under Vried Temperatures. Mechanics of Composite Materials 46(1):35–42.

    Google Scholar 

  8. Rojek M et al (2013) Composite materials with the polymeric matrix applied to ballistic shields. Archives of Materials Science and Engineering 63(1):26−35.

    Google Scholar 

  9. Yen C-F et al (2007) A Comparison Between Experiment and Numerical Simulation of Fabric Ballistic Impact. Proceedings of the 23nd International Symposium on Ballistics. Tarragona, Spain, 16–20 April 2007.

    Google Scholar 

  10. Duan Y et al (2005) Modeling Friction Effects on the Ballistic Impact Behavior of a Single-Ply High-Strength Fabric. International Journal of Impact Engineering. doi:10.1016/j.ijimpeng.2004.06.008.

  11. Liang C-C et al. (2003) Resistant performance of perforation in protective structures using a semi-empirical method with marine applications. Ocean Engineering.doi:10.1016/S0029-8018(02)00085-9.

  12. Mazurkiewicz L, Malachowski J, Baranowski P (2015) Optimization of protective panel for critical supporting elements. Composite Structure. doi:10.1016/j.compstruct.2015.08.069.

  13. Zohdi ZI (2010) High-speed impact of electromagnetically sensitive fabric and induced projectile spin. Comput Mech. doi:10.1007/s00466-010-0481-5.

  14. Rusinski E, Karlinski J, Jamroziak K (2005) The chosen aspects from research of ballistic shields. Proceedings of the 22nd DANUBIA-ADRIA Symposium on Experimental Methods in Solid Mechanics DAS. Monticelli Terme-Parma, Italy, 28.09-01.10.2005.

    Google Scholar 

  15. Czaplinski T et al. (2009) Identyfikacja parametrów modelu kompozytu zbrojonego tkaniną. Proccedings of the fifth International Symposium Damage Mechanics of Materials and Structures, Augustow 2009 (in Polish).

    Google Scholar 

  16. Bocian M, Jamroziak K, Kulisiewicz M (2014) An identification of nonlinear dissipative properties of constructional materials at dynamical impact loads conditions. Meccanica. doi:10.1007/s11012-014-9931-z.

  17. Buchacz A et al. (2013) Control of characteristic of mechatronic systems. Journal of Theoretical and Applied Mechanics 51(1):225−234.

    Google Scholar 

  18. Lenci S (2004) Elastic and damage longitudinal shear behaviour of highly concentrated long fibre composites. Meccanica 39:415–439.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Jamroziak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pyka, D., Jamroziak, K., Blazejewski, W., Bocian, M. (2017). Calculations with the Finite Element Method During the Design Ballistic Armour. In: Rusiński, E., Pietrusiak, D. (eds) Proceedings of the 13th International Scientific Conference . RESRB 2016. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-50938-9_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50938-9_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50937-2

  • Online ISBN: 978-3-319-50938-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics