Skip to main content

Spasticity Assessment in Cerebral Palsy

  • Living reference work entry
  • First Online:
  • 350 Accesses

Abstract

Spasticity is an important, but not the only, component contributing to the increased joint resistance experienced by children with spastic cerebral palsy. Conventional clinical spasticity scales, based on physical examination of the passive muscle, are easy to apply in pediatric populations. Unfortunately, these have low reliability and are unable to differentiate between the different components of joint hyper-resistance. To correctly differentiate spasticity from other neural and non-neural contributions, instrumented assessments that integrate electrophysiological and biomechanical measures are required. In the last 15 years, great advancements in clinically applicable, instrumented assessments were made. However, the translation from research to clinical setting is lagging behind. Simple, yet accurate, instrumented assessments are expected to greatly advance clinical practice in terms of treatment planning based on etiological classification and subsequent outcome evaluation. In addition, the transfer of the research findings to functional outcome would require to extend our research agenda to include assessments of hyperreflexia in the active muscle. Altogether these instrumented methods are not only needed to classify different aspects of joint hyper-resistance but will also provide further insight into its pathophysiology enabling the development of future treatment options for children with spastic cerebral palsy.

This is a preview of subscription content, log in via an institution.

References

  • Bar-On L, Aertbeliën E, Molenaers G et al (2012a) Comprehensive quantification of the spastic catch in children with cerebral palsy. Res Dev Disabil 34:386–396

    Google Scholar 

  • Bar-On L, Aertbeliën E, Wambacq H et al (2012b) A clinical measurement to quantify spasticity in children with cerebral palsy by integration of multidimensional signals. Gait Posture 38:141–147

    Article  PubMed  Google Scholar 

  • Bar-On L, Aertbeliën E, Molenaers G et al (2014a) Instrumented assessment of the effect of botulinum toxin-A in the medial hamstrings in children with cerebral palsy. Gait Posture 39:17–22

    Article  CAS  PubMed  Google Scholar 

  • Bar-On L, Aertbeliën E, Molenaers G et al (2014b) Manually-controlled instrumented spasticity assessments: a systematic review of psychometric properties. Dev Med Child Neurol 56:932–950

    Article  PubMed  Google Scholar 

  • Bar-On L, Aertbeliën E, Molenaers G, Desloovere K (2014c) Muscle activation patterns when passively stretching spastic lower limb muscles of children with cerebral palsy. PLoS One 9:e91759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-On L, Desloovere K, Molenaers G et al (2014d) Identification of the neural component of torque during manually-applied spasticity assessments in children with cerebral palsy. Gait Posture 40:346–351

    Article  CAS  PubMed  Google Scholar 

  • Bar-On L, Molenaers G, Aertbeliën E et al (2014e) The relation between spasticity and muscle behavior during the swing phase of gait in children with cerebral palsy. Res Dev Disabil 35:3354–3364

    Article  PubMed  Google Scholar 

  • Bar-On L, Van Campenhout A, Desloovere K et al (2014f) Is an instrumented spasticity assessment an improvement over clinical spasticity scales in assessing and predicting the response to integrated botulinum toxin-A treatment in children with cerebral palsy? Arch Phys Med Rehabil 95:515–523

    Article  PubMed  Google Scholar 

  • Bar-On L, Aertbeliën E, Molenaers G, Desloovere K (2015) The type of spasticity predicts botulinum toxin-A treatment outcome in children with cerebral palsy. Gait Posture 42:S91. ESMAC

    Article  Google Scholar 

  • Biering-Sørensen F, Nielsen JB, Klinge K (2006) Spasticity-assessment: a review. Spinal Cord 44: 708–722

    Article  PubMed  Google Scholar 

  • Bohannon RW, Smith MB (1987) Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther 67:206–207

    Article  CAS  PubMed  Google Scholar 

  • Boyd RN, Graham HK (1999) Objective measurement of clinical findings in the use of botulinum toxin type A for the management of children with cerebral palsy. Eur J Neurol 6:23–35

    Article  Google Scholar 

  • Burke D, Wissel J, Donnan GA (2013) Pathophysiology of spasticity in stroke. Neurology 80:S20

    Article  PubMed  Google Scholar 

  • Burridge J, Wood D, Hermens H et al (2005) Theoretical and methodological considerations in the measurement of spasticity. Disabil Rehabil 27:69–80

    Article  CAS  PubMed  Google Scholar 

  • Calota A, Levin MF (2009) Tonic stretch reflex threshold as a measure of spasticity: implications for clinical practice. Top Stroke Rehabil 16:177–188

    Article  PubMed  Google Scholar 

  • Chung SG, van Rey E, Bai Z et al (2008) Separate quantification of reflex and nonreflex components of spastic hypertonia in chronic hemiparesis. Arch Phys Med Rehabil 89:700–710

    Article  PubMed  Google Scholar 

  • Crenna P (1998) Spasticity and “spastic” gait in children with cerebral palsy. Neurosci Biobehav Rev 22: 571–578

    Article  CAS  PubMed  Google Scholar 

  • de Gooijer-van de Groep KL, de Vlugt E, de Groot JH et al (2013) Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy. J Neuroeng Rehabil 10:81

    Article  PubMed  PubMed Central  Google Scholar 

  • de Vet HC, Terwee CB, Ostelo RW et al (2006) Minimal changes in health status questionnaires: distinction between minimally detectable change and minimally important change. Health Qual Life Outcomes 4:54

    Article  PubMed  PubMed Central  Google Scholar 

  • de Vlugt E, de Groot JH, Schenkeveld KE et al (2010) The relation between neuromechanical parameters and Ashworth score in stroke patients. J Neuroeng Rehabil 7:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Delp S, Anderson FC, Arnold AS et al (2007) OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng 54:1940–1950

    Article  PubMed  Google Scholar 

  • Flamand VH, Massé-Alarie H, Schneider C (2013) Psychometric evidence of spasticity measurement tools in cerebral palsy children and adolescents: a systematic review. J Rehabil Med 45:14–23

    Article  PubMed  Google Scholar 

  • Fleuren JFM, Voerman GE, Erren-Wolters CV et al (2010) Stop using the Ashworth scale for the assessment of spasticity. J Neurol Neurosurg Psychiatry 81:46–52

    Article  CAS  PubMed  Google Scholar 

  • Fosang AL, Galea MP, McCoy AT et al (2003) Measures of muscle and joint performance in the lower limb of children with cerebral palsy. Dev Med Child Neurol 45:664–670

    Article  PubMed  Google Scholar 

  • Galiana L, Fung J, Kearney R (2005) Identification of intrinsic and reflex ankle stiffness components in stroke patients. Exp Brain Res 165:422–434

    Article  PubMed  Google Scholar 

  • Gäverth J, Eliasson A-C, Kullander K et al (2014) Sensitivity of the NeuroFlexor method to measure change in spasticity after treatment with botulinum toxin A in wrist and finger muscles. J Rehabil Med 46:629–634

    Article  PubMed  Google Scholar 

  • Gholami S, Ansari NN, Naghdi S et al (2017) Biomechanical investigation of the modified Tardieu scale in assessing knee extensor spasticity poststroke. Physiother Res Int 23:e1698

    Article  Google Scholar 

  • Graham HK, Aoki KR, Autti-Rämö I et al (2000) Recommendations for the use of botulinum toxin type A in the management of cerebral palsy. Gait Posture 11:67–79

    Article  CAS  PubMed  Google Scholar 

  • Haberfehlner H, Maas H, Harlaar J et al (2016) Knee moment-angle characteristics and semitendinosus muscle morphology in children with spastic paresis selected for medial hamstring lengthening. PLoS One 11:e0166401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harlaar J, Becher JG, Snijders CJ, Lankhorst GJ (2000) Passive stiffness characteristics of ankle plantar flexors in hemiplegia. Clin Biomech 15:261–270

    Article  CAS  Google Scholar 

  • Hasson F, Keeney S, McKenna H (2000) Research guidelines for the Delphi survey technique. J Adv Nurs 32:1008–1015

    PubMed  CAS  Google Scholar 

  • Haugh AB, Pandyan AD, Johnson GR (2006) A systematic review of the Tardieu scale for the measurement of spasticity. Disabil Rehabil 28:899–907

    Article  CAS  PubMed  Google Scholar 

  • Jamshidi M, Smith AW (1996) Clinical measurement of spasticity using the pendulum test: comparison of electrogoniometric and videotape analyses. Arch Phys Med Rehabil 77:1129–1132

    Article  CAS  PubMed  Google Scholar 

  • Jansen K, De Groote F, Aerts W et al (2014) Altering length and velocity feedback during a neuro-musculoskeletal simulation of normal gait contributes to hemiparetic gait characteristics. J Neuroeng Rehabil 11:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Jethwa A, Mink J, Macarthur C et al (2010) Development of the hypertonia assessment tool (HAT): a discriminative tool for hypertonia in children. Dev Med Child Neurol 52:e83–e87

    Article  PubMed  Google Scholar 

  • Kalsi G, Fry NR, Shortland AP (2016) Gastrocnemius muscle–tendon interaction during walking in typically-developing adults and children, and in children with spastic cerebral palsy. J Biomech 49: 3194–3199

    Article  PubMed  Google Scholar 

  • Kamper DG, Schmit BD, Rymer WZ (2001) Effect of muscle biomechanics on the quantification of spasticity. Ann Biomed Eng 29:1122–1134

    Article  CAS  PubMed  Google Scholar 

  • Klingels K, Demeyere I, Jaspers E et al (2012) Upper limb impairments and their impact on activity measures in children with unilateral cerebral palsy. Eur J Paediatr Neurol 16:475–484

    Article  PubMed  Google Scholar 

  • Lamontagne A, Malouin F, Richards CL (2001) Locomotor-specific measure of spasticity of plantarflexor muscles after stroke. Arch Phys Med Rehabil 82:1696–1704

    Article  CAS  PubMed  Google Scholar 

  • Lance J (1980) Symposium synopsis. In: Feldman RG, Young RR, Koella WPE (eds) Spasticity: disordered motor control. Yearbook medical, Chicago, pp 485–494

    Google Scholar 

  • Lindberg PG, Gäverth J, Islam M et al (2011) Validation of a new biomechanical model to measure muscle tone in spastic muscles. Neurorehabil Neural Repair 25:617–625

    Article  PubMed  Google Scholar 

  • Malhotra S, Pandyan AD, Day CR et al (2009) Spasticity, an impairment that is poorly defined and poorly measured. Clin Rehabil 23:651–658

    Article  CAS  PubMed  Google Scholar 

  • Mathewson MA, Chambers HG, Girard PJ et al (2014) Stiff muscle fibers in calf muscles of patients with cerebral palsy lead to high passive muscle stiffness. J Orthop Res 32:1667–1674

    Article  PubMed  Google Scholar 

  • Meinders M, Price R, Lehmann JF, Questad KA (1996) The stretch reflex response in the normal and spastic ankle: effect of ankle position. Arch Phys Med Rehabil 77:487–492

    Article  CAS  PubMed  Google Scholar 

  • Meyer GA, Lieber RL (2011) A nonlinear model of passive muscle viscosity. J Biomech Eng 133:91007–91001

    Article  CAS  PubMed Central  Google Scholar 

  • Morris SL, Williams G (2018) A historical review of the evolution of the Tardieu scale. Brain Inj 32:665–669

    Article  PubMed  Google Scholar 

  • Musampa NK, Mathieu PA, Levin MF (2007) Relationship between stretch reflex thresholds and voluntary arm muscle activation in patients with spasticity. Exp Brain Res 181:579–593

    Article  PubMed  Google Scholar 

  • Nielsen JB, Petersen NT, Crone C, Sinkjaer T (2005) Stretch reflex regulation in healthy subjects and patients with spasticity. Neuromodulation 9:49–57

    Article  Google Scholar 

  • Pandyan AD, Price CI, Rodgers H et al (2001) Biomechanical examination of a commonly used measure of spasticity. Clin Biomech (Bristol, Avon) 16:859–865

    Article  CAS  Google Scholar 

  • Pandyan A, Gregoric M, Barnes M et al (2005) Spasticity: clinical perceptions, neurological realities and meaningful measurement. Disabil Rehabil 27:2–6

    Article  CAS  PubMed  Google Scholar 

  • Pandyan AD, Van Wijck FMJ, Stark S et al (2006) The construct validity of a spasticity measurement device for clinical practice: an alternative to the Ashworth scales. Disabil Rehabil 28:579–585

    Article  PubMed  Google Scholar 

  • Pennati GV, Plantin J, Borg J, Lindberg PG (2016) Normative NeuroFlexor data for detection of spasticity after stroke: a cross-sectional study. J Neuroeng Rehabil 13:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Platz T, Eickhof C, Nuyens G, Vuadens P (2005) Clinical scales for the assessment of spasticity, associated phenomena, and function: a systematic review of the literature. Disabil Rehabil 27:7–18

    Article  CAS  PubMed  Google Scholar 

  • Sanger TD, Delgado MR, Gaebler-Spira D et al (2003) Classification and definition of disorders causing hypertonia in childhood. Pediatrics 111:e89–e97

    Article  PubMed  Google Scholar 

  • Schwartz MH, Rozumalski A, Trost JP (2008) The effect of walking speed on the gait of typically developing children. J Biomech 41:1639–1650

    Article  PubMed  Google Scholar 

  • Sheean G (2008) Neurophysiology of spasticity. In: Barnes M, Johnson G (eds) Upper motor neurone syndrome and spasticity. Clinical management and neurophysiology, 2nd edn. Cambridge University Press, Cambridge, pp 9–54

    Chapter  Google Scholar 

  • Sinkjaer T, Magnussen I (1994) Passive, intrinsic and reflex-mediated stiffness in the ankle extensors of hemiparetic patients. Brain 117:355–363

    Article  PubMed  Google Scholar 

  • Sloot LH, Van Den Noort JC, Van Der Krogt MM et al (2015a) Can treadmill perturbations evoke stretch reflexes in the calf muscles? PLoS One 10:e0144815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sloot LH, van der Krogt MM, de Gooijer-van de Groep KL et al (2015b) The validity and reliability of modelled neural and tissue properties of the ankle muscles in children with cerebral palsy. J Neuroeng Rehabil 42:7–15

    Google Scholar 

  • Sloot LH, Bar-On L, van der Krogt MM et al (2016) Motorized versus manual instrumented spasticity assessment in children with cerebral palsy. Dev Med Child Neurol 59:145–151

    Article  Google Scholar 

  • Tardieu G, Shentoub S, Delarue R (1954) A la recherche d’une technique de mesure de la spasticite imprime avec le periodique. Neurologique 91:143–144

    CAS  Google Scholar 

  • Van Campenhout A, Bar-On L, Aertbeliën E et al (2014) Can we unmask features of spasticity during gait in children with cerebral palsy by increasing their walking velocity? Gait Posture 39:953–957

    Article  PubMed  Google Scholar 

  • van den Noort JC, Scholtes VA, Becher JG, Harlaar J (2010) Evaluation of the catch in spasticity assessment in children with cerebral palsy. Arch Phys Med Rehabil 91:615–623

    Article  PubMed  Google Scholar 

  • van den Noort J, Bar-On L, Aertbeliën E et al (2017) European consensus on the concepts and measurement of the pathophysiological neuromuscular responses to passive muscle stretch. Eur J Neurol 24:981–e38

    Article  PubMed  Google Scholar 

  • van der Krogt MM, Doorenbosch CAM, Becher JG, Harlaar J (2009) Walking speed modifies spasticity effects in gastrocnemius and soleus in cerebral palsy gait. Clin Biomech (Bristol, Avon) 24:422–428

    Article  Google Scholar 

  • van der Krogt MM, Doorenbosch CAM, Becher JG, Harlaar J (2010) Dynamic spasticity of plantar flexor muscles in cerebral palsy gait. J Rehabil Med 42:656–663

    Article  PubMed  Google Scholar 

  • Voerman G, Gregorič M, Hermens H (2005) Neurophysiological methods for the assessment of spasticity: the Hoffmann reflex, the tendon reflex, and the stretch reflex. Disabil Rehabil 27:33–68

    Article  CAS  PubMed  Google Scholar 

  • Willerslev-Olsen M, Lorentzen J, Sinkjaer T, Nielsen JB (2013) Passive muscle properties are altered in children with cerebral palsy before the age of 3 years and are difficult to distinguish clinically from spasticity. Dev Med Child Neurol 55:617–623

    Article  PubMed  Google Scholar 

  • Willerslev-Olsen M, Andersen JB, Sinkjaer T, Nielsen JB (2014) Sensory feedback to ankle plantar flexors is not exaggerated during gait in spastic children with cerebral palsy. J Neurophysiol 111:746–754

    Article  PubMed  Google Scholar 

  • Wood D, Burridge J, Van Wijck F et al (2005) Biomechanical approaches applied to the lower and upper limb for the measurement of spasticity: a systematic review of the literature. Disabil Rehabil 27:19–33

    Article  CAS  PubMed  Google Scholar 

  • Wu Y-N, Ren Y, Goldsmith A et al (2010) Characterization of spasticity in cerebral palsy: dependence of catch angle on velocity. Dev Med Child Neurol 52:563–569

    Article  PubMed  Google Scholar 

  • Zhao H, Wu Y-N, Hwang M et al (2011) Changes of calf muscle-tendon biomechanical properties induced by passive-stretching and active-movement training in children with cerebral palsy. J Appl Physiol 111:435–442

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn Bar-On .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bar-On, L., Harlaar, J., Desloovere, K. (2018). Spasticity Assessment in Cerebral Palsy. In: Miller, F., Bachrach, S., Lennon, N., O'Neil, M. (eds) Cerebral Palsy. Springer, Cham. https://doi.org/10.1007/978-3-319-50592-3_40-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50592-3_40-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50592-3

  • Online ISBN: 978-3-319-50592-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics