Skip to main content

Sumoylation in Craniofacial Disorders

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 963))

Abstract

Craniofacial development requires a complex series of coordinated and finely tuned events to take place, during a relatively short time frame. These events are set in motion by switching on and off transcriptional cascades that involve the use of numerous signalling pathways and a multitude of factors that act at the site of gene transcription. It is now well known that amidst the subtlety of this process lies the intricate world of protein modification, and the posttranslational addition of the small ubiquitin -like modifier, SUMO, is an example that has been implicated in this process. Many proteins that are required for formation of various structures in the embryonic head and face adapt specific functions with SUMO modification. Interestingly, the main clinical phenotype reported for a disruption of the SUMO1 locus is the common birth defect cleft lip and palate. In this chapter therefore, we discuss the role of SUMO1 in craniofacial development, with emphasis on orofacial clefts. We suggest that these defects can be a sensitive indication of down regulated SUMO modification at a critical stage during embryogenesis. As well as specific mutations affecting the ability of particular proteins to be sumoylated, non-genetic events may have the effect of down-regulating the SUMO pathway to give the same result. Enzymes regulating the SUMO pathway may become important therapeutic targets in the preventative and treatment therapies for craniofacial defects in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdelhak S, Kalatzis V, Heilig R, Compain S, Samson D, Vincent C, Weil D, Cruaud C, Sahly I, Leibovici M, Bitner-Glindzicz M, Francis M, Lacombe D, Vigneron J, Charachon R, Boven K, Bedbeder P, Van Regemorter N, Weissenbach J, Petit C (1997) A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family. Nat Genet 15:157–164

    Article  CAS  PubMed  Google Scholar 

  • Alkuraya FS, Saadi I, Lund JJ, Turbe-Doan A, Morton CC, Maas RL (2006) SUMO1 haploinsufficiency leads to cleft lip and palate. Science 313:1751

    Article  PubMed  Google Scholar 

  • Andreou AM, Pauws E, Jones MC, Singh MK, Bussen M, Doudney K, Moore GE, Kispert A, Brosens JJ, Stanier P (2007) TBX22 missense mutations found in patients with X-linked cleft palate affect DNA binding, sumoylation, and transcriptional repression. Am J Hum Genet 81:700–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bossis G, Melchior F (2006) Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol Cell 21:349–357

    Article  CAS  PubMed  Google Scholar 

  • Braybrook C, Doudney K, Marçano AC, Arnason A, Bjornsson A, Patton MA, Goodfellow PJ, Moore GE, Stanier P (2001) The T-box transcription factor gene TBX22 is mutated in X-linked cleft palate and ankyloglossia. Nat Genet 29:179–183

    Article  CAS  PubMed  Google Scholar 

  • Brewer C, Holloway S, Zawalnyski P, Schinzel A, FitzPatrick D (1998) A chromosomal deletion map of human malformations. Am J Hum Genet 63:1153–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brewer CM, Leek JP, Green AJ, Holloway S, Bonthron DT, Markham AF, FitzPatrick DR (1999) A locus for isolated cleft palate, located on human chromosome 2q32. Am J Hum Genet 65:387–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carta E, Pauws E, Thomas AC, Mengrelis K, Moore GE, Lees M, Stanier P (2012) Investigation of SUMO pathway genes in the etiology of nonsyndromic cleft lip with or without cleft palate. Birth Defects Res A Clin Mol Teratol 94:459–463

    Article  CAS  PubMed  Google Scholar 

  • Carter TC, Molloy AM, Pangilinan F, Troendle JF, Kirke PN, Conley MR, Orr DJ, Earley M, McKiernan E, Lynn EC, Doyle A, Scott JM, Brody LC, Mills JL (2010) Testing reported associations of genetic risk factors for oral clefts in a large Irish study population. Birth Defects Res A Clin Mol Teratol 88:84–93

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravarti A, Little P (2003) Nature, nurture and human disease. Nature 421:412–414

    Article  PubMed  Google Scholar 

  • Chang CC, Lin DY, Fang HI, Chen RH, Shih HM (2005) Daxx mediates the small ubiquitin-like modifier-dependent transcriptional repression of Smad4. J Biol Chem 280:10164–10173

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Kang X, Zhang S, Yeh ET (2007) SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 131:584–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crum TL, Okkema PG (2007) SUMOylation-dependant function of a T-box transcriptional repressor in Caenorhabditis elegans. Biochem Soc Trans 35:1424–1426

    Article  CAS  PubMed  Google Scholar 

  • Daniels M, Shimizu K, Zorn AM, Ohnuma S (2004) Negative regulation of Smad2 by PIASy is required for proper Xenopus mesoderm formation. Development 131:5613–5626

    Article  CAS  PubMed  Google Scholar 

  • de Assis NA, Nowak S, Ludwig KU, Reutter H, Vollmer J, Heilmann S, Kluck N, Lauster C, Braumann B, Reich RH, Hemprich A, Knapp M, Wienker TF, Kramer FJ, Hoffmann P, Nöthen MM, Mangold E (2011) SUMO1 as a candidate gene for non-syndromic cleft lip with or without cleft palate: no evidence for the involvement of common or rare variants in Central European patients. Int J Pediatr Otorhinolaryngol B75:49–52

    Article  Google Scholar 

  • Dobreva G, Chahrour M, Dautzenberg M, Chirivella L, Kanzler B, Fariñas I, Karsenty G, Grosschedl R (2006) SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell 125:971–986

    Article  CAS  PubMed  Google Scholar 

  • Eifler K, Vertegaal ACO (2015) Mapping the SUMOylated landscape. FEBS J 282:3669–3680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evdokimov E, Sharma P, Lockett SJ, Lualdi M, Keuhn MR (2008) Loss of SUMO1 in mice affects RanGAP1 localization and formation of PML nuclear bodies, but is not lethal as it can be compensated by SUMO2 or SUMO3. J Cell Sci 121:4106–4113

    Article  CAS  PubMed  Google Scholar 

  • FitzPatrick DR, Carr IM, McLaren L, Leek JP, Wightman P, Williamson K, Gautier P, McGill N, Hayward C, Firth H, Markham AF, Fantes JA, Bonthron DT (2003) Identification of SATB2 as the cleft palate gene on 2q32-q33. Hum Mol Genet 12:2491–2501

    Article  CAS  PubMed  Google Scholar 

  • Galy B, Ferring D, Benesova M, Benes V, Hentze MW (2004) Targeted mutagenesis of the murine IRP1 and IRP2 genes reveals context- RNA processing differences in vivo. RNA 10:1019–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8:947–956

    Article  CAS  PubMed  Google Scholar 

  • Ghioni P, D’Alessandra Y, Mansueto G, Jaffray E, Hay RT, La Mantia G, Guerrini L (2005) The protein stability and transcriptional activity of p63alpha are regulated by SUMO-1 conjugation. Cell Cycle 4:183–190

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Zhang G, Wang Y, Ma J, Ren H, Zhao G, Li Y, Shi B, Huang Y (2012) Association between small ubiquitin-related modifier-1 gene polymorphism and non-syndromic oral clefting. West China J Stomatol 30:97–102

    CAS  Google Scholar 

  • Gupta V, Bei M (2006) Modification of Msx1 by SUMO-1. Biochem Biophys Res Commun 345:74–77

    Article  CAS  PubMed  Google Scholar 

  • Hansen RS, Wijmenga C, Luo P, Stanek AM, Canfield TK, Weemaes CMR, Gartler SM (1999) The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci U S A 96:14412–14417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu YH, Sarker KP, Pot I, Chan A, Netherton SJ, Bonni S (2006) Sumoylated SnoN represses transcription in a promoter-specific manner. J Biol Chem 281:33008–33018

    Article  CAS  PubMed  Google Scholar 

  • Huang YP, Wu G, Guo Z, Osada M, Fomenkov T, Park HL, Trink B, Sidransky D, Fomenkov A, Ratovitski EA (2004) Altered sumoylation of p63alpha contributes to the split-hand/foot malformation phenotype. Cell Cycle 3:1587–1596

    Article  CAS  PubMed  Google Scholar 

  • Izzi L, Narimatsu M, Attisano L (2008) Sumoylation differentially regulates Goosecoid-mediated transcriptional repression. Exp Cell Res 314:1585–1594

    Article  CAS  PubMed  Google Scholar 

  • Jezewski PA, Vieira AR, Nishimura C, Ludwig B, Johnson M, O’Brien SE, Daack-Hirsch S, Schultz RE, Weber A, Nepomucena B, Romitti PA, Christensen K, Orioli IM, Castilla EE, Machida J, Natsume N, Murray JC (2003) Complete sequencing shows a role for MSX1 in non-syndromic cleft lip and palate. J Med Genet 40:399–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia ZL, Li Y, Meng T, Shi B (2010) Association between polymorphisms at small ubiquitin-like modifier-1 and non-syndromic orofacial clefts in Western China. DNA Cell Biol 29:675–680

    Article  CAS  PubMed  Google Scholar 

  • Kaiser FJ, Lüdecke HJ, Weger S (2007) SUMOylation modulates transcriptional repression by TRPS1. Biol Chem 388:381–390

    Article  CAS  PubMed  Google Scholar 

  • Kang ES, Park CW, Chung JH (2001) Dnmt3b, de novo DNA methyltransferase, interacts with SUMO-1 and Ubc9 through its N-terminal region and is subject to modification by SUMO-1. Biochem Biophys Res Commun 289:862–868

    Article  CAS  PubMed  Google Scholar 

  • Kang JS, Saunier EF, Akhurst RJ, Derynck R (2008) The I TGFb receptor is covalently modified and regulated by sumoylation. Nat Cell Biol 10:654–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang X, Qi Y, Zuo Y, Wang Q, Zou Y, Schwartz RJ, Cheng J, Yeh ET (2010) SUMO-specific protease 2 is essential for suppression of polycomb group protein-mediated gene silencing during embryonic development. Mol Cell 38:191–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo S, Schutte BC, Richardson RJ, Bjork BC, Knight AS, Watanabe Y, Howard E, de Lima RL, Daack-Hirsch S, Sander A, McDonald-McGinn DM, Zackai EH, Lammer EJ, Aylsworth AS, Ardinger HH, Lidral AC, Pober BR, Moreno L, Arcos-Burgos M, Valencia C, Houdayer C, Bahuau M, Moretti-Ferreira D, Richieri-Costa A, Dixon MJ, Murray JC (2002) Mutations in IRF6 cause Van der Woude, and popliteal pterygium syndromes. Nat Genet 32:285–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Quinn JC, Prasanth KV, Swiss VA, Economides KD, Camacho MM, Spector DL, Abate-Shen C (2006) PIAS1 confers DNA-binding specificity on the Msx1 homeoprotein. Genes Dev 20:784–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leoyklang P, Suphapeetiporn K, Siriwan P, Desudchit T, Chaowanapanja P, Gahl WA, Shotelersuk V (2007) Heterozygous nonsense mutation SATB2 associated with cleft palate, osteoporosis, and cognitive defects. Hum Mutat 28:732–738

    Article  CAS  PubMed  Google Scholar 

  • Liang M, Melchior F, Feng XH, Lin H (2004) Regulation of Smad4 sumoylation and transforming growth factor-beta signalling by protein inhibitor of activated STAT1. J Biol Chem 279:22857–22865

    Article  CAS  PubMed  Google Scholar 

  • Lidral AC, Moreno LM (2005) Progress toward discerning the genetics of cleft lip. Curr Opin Pediatr 17:731–739

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin X, Liang M, Liang YY, Brunicardi FC, Melchior F, Feng XH (2003) Activation of transforming growth factor-beta signaling by SUMO-1 modification of tumor suppressor Smad4/DPC4. J Biol Chem 278:18714–18719

    Article  CAS  PubMed  Google Scholar 

  • Long J, Wang G, He D, Liu F (2004) Repression of Smad4 transcriptional activity by SUMO modification. Biochem J 379:232–229

    Article  Google Scholar 

  • Malik TH, Von Stechow D, Bronson RT, Shivdasani RA (2002) Deletion of the GATA domain of TRPS1 causes an absence of facial hair and provides new insights into the bone disorder in inherited tricho-rhino-phalangeal syndromes. Mol Cell Biol 22:8592–8600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marazita ML, Murray JC, Lidral AC, Arcos-Burgos M, Cooper ME, Goldstein T, Maher BS, Daack-Hirsch S, Schultz R, Mansilla MA, Field LL, Liu YE, Prescott N, Malcolm S, Winter R, Ray A, Moreno L, Valencia C, Neiswanger K, Wyszynski DF, Bailey-Wilson JE, Albacha-Hejazi H, Beaty TH, McIntosh I, Hetmanski JB, Tunçbilek G, Edwards M, Harkin L, Scott R, Roddick LG (2004) Meta-analysis of 13 genome scans reveals multiple cleft lip/palate genes with novel loci on 9q21 and 2q32-35. Am J Hum Genet 75:161–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marçano AC, Doudney K, Braybrook C, Squires R, Patton MA, Lees MM, Richieri-Costa A, Lidral AC, Murray JC, Moore GE, Stanier P (2004) TBX22 mutations are a frequent cause of cleft palate. J Med Genet 41:68–74

    Article  PubMed  PubMed Central  Google Scholar 

  • Meulmeester E, Kunze M, Hsiao HH, Urlab H, Melchior F (2008) Mechanisms and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. MolCell 30:539–540

    Google Scholar 

  • Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A (1999) p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398:708–713

    Article  CAS  PubMed  Google Scholar 

  • Momeni P, Glöckner G, Schmidt O, von Holtum D, Albrecht B, Gillessen-Kaesbach G, Hennekam R, Meinecke P, Zabel B, Rosenthal A, Horsthemke B, Lüdecke HJ (2000) Mutations in a new gene, encoding a zinc-finger protein, cause tricho-rhino-phalangeal syndrome type I. Nat Genet 24:71–74

    Article  CAS  PubMed  Google Scholar 

  • Mostowska A, Hozyasz KK, Wojcicki P, Biedziak B, Paradowska P, Jagodzinski PP (2010) Association between genetic variants of reported candidate genes or regions and risk of cleft lip with or without cleft palate in the polish population. Birth Defects Res A Clin Mol Teratol 88:538–545

    Article  CAS  PubMed  Google Scholar 

  • Murray JC (2002) Gene/environment causes of cleft lip and/or palate. Clin Genet 61:248–256

    Article  CAS  PubMed  Google Scholar 

  • Murray JC, Schutte BC (2004) Cleft palate: players, pathways, and pursits. J Clin Invest 12:1676–1678

    Article  Google Scholar 

  • Nacerddine K, Lehembre F, Bhumik M, Artus J, Cohen-Tannoudji M, Babinet C, Pandolfi PP, Dejean A (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell 9:769–799

    Article  CAS  PubMed  Google Scholar 

  • Park J, Kim TY, Jung Y, Song SH, Oh DY, Im SA, Bang YJ (2008) DNA methyltransferase 3B mutant in ICF syndrome interacts non-covalently with SUMO-1. J Mol Med 86:1269–1277

    Article  CAS  PubMed  Google Scholar 

  • Pauws E, Stanier P (2007) FGF signalling and SUMO modification: new players in the aetiology of cleft lip and/or palate. Trends Genet 12:631–640

    Article  Google Scholar 

  • Rinne T, Brunner HG, van Bokhoven H (2007) p63-associated disorders. Cell Cycle 6:262–268

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Perez JA, Mallo M, Gendon-Maguire M, Gridley T, Behringer RR (1999) Goosecoid acts cell autonomously in mesenchyme-derived tissues during craniofacial development. Development 121:3005–3012

    Google Scholar 

  • Roy Chowdhuri S, Crum T, Woollard A, Aslam S, Okkema PG (2006) The T-box transcription factor TBX-2 and the SUMO conjugating enzyme UBC-9 are required for ABa-derived pharyngeal muscle in C. elegans. Dev Biol 295:664–677

    Article  PubMed  Google Scholar 

  • Rui HL, Fan E, Zhou HM, Xu Z, Zhang Y, Lin SC (2002) SUMO-1 modification of the C-terminal KVEKVD of Axin is required for JNK activation but has no effect on Wnt signaling. J Biol Chem 277:42981–42986

    Article  CAS  PubMed  Google Scholar 

  • Sachdev S, Bruhn L, Sieber H, Pichler A, Melchior F, Grosschedl R (2001) PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev 15:3088–3103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satokata I, Maas R (1994) Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet 6:348–356

    Article  CAS  PubMed  Google Scholar 

  • Seeler JS, Dejean A (2003) Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 4:690–699

    Article  CAS  PubMed  Google Scholar 

  • Setó–Salvia N, Stanier P (2014) Genetics of cleft lip and/or cleft palate: association with other common anomalies. Eur J Med Genet 57:381–393

    Article  PubMed  Google Scholar 

  • Sharma P, Yamada S, Lualdi M, Dasso M, Kuehn MR (2013) Senp1 is essential for desumoylating Sumo1-modified proteins but dispensable for Sumo2 and Sumo3 deconjugation in the mouse embryo. Cell Rep 3:1640–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi M, Christensen K, Weinberg CR, Romitti P, Bathum L, Lozada A, Morris RW, Lovett M, Murray JC (2007) Orofacial cleft risk is increased with maternal smoking and specific detoxification-gene variants. Am J Hum Genet 80:76–90

    Article  CAS  PubMed  Google Scholar 

  • Shi M, Mostowska A, Jugessur A, Johnson MK, Mansilla MA, Christensen K, Lie RT, Wilcox AJ, Murray JC (2009) Identification of microdeletions in candidate genes for cleft lip and/or palate. Birth Defects Res A Clin Mol Teratol 85:42–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada K, Suzuki N, Ono Y, Tanaka K, Maeno M, Ito K (2008) Ubc9 promotes the stability of SMad4 and the nuclear accumulation of Smad1 in osteoblast-like saos-2 cells. Bone 42:886–893

    Article  CAS  PubMed  Google Scholar 

  • Song T, Li G, Jing G, Jiao X, Shi J, Zhang B, Wang L, Ye X, Cao F (2008) SUMO1 polymorphisms are associated with non-syndromic cleft lip with or without cleft palate. Biochem Biophys Res Commun 377:1265–1268

    Article  CAS  PubMed  Google Scholar 

  • Sramko M, Markus J, Kabát J, Wolff L, Bies J (2006) Stress-induced inactivation of the c-Myb transcription factor through conjugation of SUMO-2/3 proteins. J Biol Chem 281:40065–40075

    Article  CAS  PubMed  Google Scholar 

  • Stanier P, Moore GE (2004) Genetics of cleft lip and palate: syndromic genes contribute to the incidence of non-syndromic clefts. Hum Mol Genet 13:R73–R81

    Article  CAS  PubMed  Google Scholar 

  • Suphapeetiporn K, Tongkobpetch S, Siriwan P, Shotelersuk V (2007) TBX22 mutations are a frequent cause of non-syndromic cleft palate in the Thai population. Clin Genet 72:78–83

    Article  Google Scholar 

  • Tang MR, Wang YX, Han SY, Guo S, Wang D (2014) SUMO1 genetic polymorphisms may contribute to the risk of nonsyndromic cleft lip with or without palate: a meta-analysis. Genet Test Mol Biomarkers 18:616–624

    Article  CAS  PubMed  Google Scholar 

  • Taylor KM, Labonne C (2005) SoxE factors function equivalently during neural crest and inner ear development and their activity is regulated by SUMOylation. Dev Cell 9:593–603

    Article  CAS  PubMed  Google Scholar 

  • Tempe D, Piechaczyk M, Bossis G (2008) SUMO under stress. Biochem Soc Trans 36:874–878

    Article  CAS  PubMed  Google Scholar 

  • Thomason HA, Dixon MJ, Dixon J (2008) Facial clefting in Tp63 deficient mice results from altered Bmp4, Fgf8 and Shh signalling. Dev Biol 321:273–282

    Article  CAS  PubMed  Google Scholar 

  • Tsuruzoe S, Ishihara K, Uchimura Y, Watanabe S, Sekita Y, Aoto T, Saitoh H, Yuasa Y, Niwa H, Kawasuji M, Baba H, Nakao M (2006) Inhibition of DNA binding of Sox2 by the SUMO conjugation. Biochem Biophys Res Commun 351:920–926

    Article  CAS  PubMed  Google Scholar 

  • Van Buggenhout G, Van Ravenswaaij-Arts C, Mc Maas N, Thoelen R, Vogels A, Smeets D, Salden I, Matthijs G, Fryns JP, Vermeesch JR (2005) The del(2)(q32.2q33) deletion syndrome defined by clinical and molecular characterization of four patients. Eur J Med Genet 48:276–289

    Article  PubMed  Google Scholar 

  • Van den Boogaard M-JH, Dorland M, Beemer FA, van Amstel HKP (2000) MSX1 mutation is associated with orofacial clefting and tooth agenesis in humans. Nat Genet 24:342–343

    Article  CAS  PubMed  Google Scholar 

  • Vieira AR, Avila JR, Daack-Hirsch S, Dragan E, Félix TM, Rahimov F, Harrington J, Schultz RR, Watanabe Y, Johnson M, Fang J, O’Brien SE, Orioli IM, Castilla EE, Fitzpatrick DR, Jiang R, Marazita ML, Murray JC (2005) Medical sequencing of candidate genes for nonsyndromic cleft lip and palate. PLoS Genet 1:e64

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wansleeben C, Zhao S, Miao P, Paschen W, Yang W (2014) SUMO2 is essential while SUMO3 is dispensable for mouse embryonic development. EMBO Rep 15:878–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrighton KH, Liang M, Bryan B, Luo K, Liu M, Feng XH, Lin X (2007) Transforming growth factor-beta-independent regulation of myogenesis by SnoN sumoylation. J Biol Chem 282:6517–6524

    Article  CAS  PubMed  Google Scholar 

  • Wyszynski DF, Beaty TH, Maestri NE (1996) Genetics of nonsyndromic oral clefts revisited. Cleft Palate J 33:406–417

    Article  CAS  Google Scholar 

  • Xu GL, Bestor TH, Bourc’his D, Hsieh CL, Tommerup N, Bugge M, Hulten M, Qu X, Russo JJ, Viegas-Pequignot E (1999a) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402:187–191

    Article  CAS  PubMed  Google Scholar 

  • Xu P-X, Adams J, Peters H, Brown MC, Heaney S, Maas R (1999b) Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia Nat. Gen Dent 23:113–117

    CAS  Google Scholar 

  • Yamamoto H, Ihara M, Matsuura Y, Kikuchi A (2003) Sumoylation is involved in β-catenin-dependent activation of Tcf-4. EMBO J 22:2047–2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, Tabin C, Sharpe A, Caput D, Crum C, McKeon F (1999) p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398:714–718

    Article  CAS  PubMed  Google Scholar 

  • Yukita A, Michiue T, Asashima M, Sakurai K, Yamamoto H, Ihara M, Kikuchi A, Asashima M (2004) XSENP1, a novel SUMO-specific protease in Xenopus, inhibits normal head formation by down-regulation of Wnt/β-catenin signalling. Genes Cells 9:723–736

    Article  CAS  PubMed  Google Scholar 

  • Yukita A, Michiue T, Danno H, Asashima M (2007) XSUMO-1 is required for normal mesoderm induction and axis elongation during early Xenopus development. Dev Dyn 236:2757–2766

    Article  CAS  PubMed  Google Scholar 

  • Zhang F-P, Mikkonen L, Toppari J, Palvimo JJ, Thesleff I, Janne OA (2008) SUMO-1 function is dispensable in normal mouse development. Mol Cell Biol 28:5381–5390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Stanier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pauws, E., Stanier, P. (2017). Sumoylation in Craniofacial Disorders. In: Wilson, V. (eds) SUMO Regulation of Cellular Processes. Advances in Experimental Medicine and Biology, vol 963. Springer, Cham. https://doi.org/10.1007/978-3-319-50044-7_19

Download citation

Publish with us

Policies and ethics