Skip to main content

Focal Therapy for Prostate Cancer: A Molecular Biology Approach with TRAIL

  • Chapter
  • First Online:
  • 990 Accesses

Part of the book series: Current Clinical Urology ((CCU))

Abstract

Definitive treatment of prostate cancer is limited to radical surgery or radiation therapy for localized or regional disease. Localized therapy of solid tumors has been successful in a number of settings, and the treatment of prostate cancer with local (intraprostatic) regimens, such as cryotherapy and brachytherapy, is a common practice. Gene transfer technology offers the potential for the development of new therapies for prostate cancer, with several experimental viral-based studies serving as current treatment options. Of the viral-based therapies, published data indicate minimal toxicity for adenovirus (Ad) injection into the prostate up to doses of 1011 plaque-forming units (pfu). Recombinant Ad vectors infect a wide range of proliferating and quiescent cell types, making this gene delivery system a suitable tool for studying diseases, vaccine therapy, and potential clinical use. Moreover, recombinant Ad is structurally stable and can be prepared and purified to high titers, and wild-type Ad infections are extremely common in the general population, giving Ad a well-documented safety record. Our group has been investigating the potential of a recombinant, replication-deficient adenoviral vector encoding the cDNA for the tumor necrosis factor (TNF) superfamily member TNF-related apoptosis-inducing ligand (Ad5-TRAIL) as a therapeutic agent for prostate cancer. Ad5-TRAIL infection results in the rapid transcription and translation of the transferred TRAIL cDNA into functional TRAIL protein that, when expressed on the cell surface, induces apoptotic death in TRAIL-sensitive prostate tumor cell targets but not normal prostate cells. This chapter outlines the use of Ad gene transfer technology as a novel focal therapy for prostate cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Coen JJ, Zietman AL, Thakral H, Shipley WU. Radical radiation for localized prostate cancer: local persistence of disease results in a late wave of metastases. J Clin Oncol. 2002;20(15):3199–205.

    Article  PubMed  Google Scholar 

  2. Han M, Partin AW, Pound CR, Epstein JI, Walsh PC. Long-term biochemical disease-free and cancer-specific survival following anatomic radical retropubic prostatectomy. The 15-year johns hopkins experience. Urol Clin North Am. 2001;28(3):555–65.

    Article  CAS  PubMed  Google Scholar 

  3. Humphrey PA. Complete histologic serial sectioning of a prostate gland with adenocarcinoma. Am J Surg Pathol. 1993;17(5):468–72.

    Article  CAS  PubMed  Google Scholar 

  4. Valerio M, Ahmed HU, Emberton M, Lawrentschuk N, Lazzeri M, Montironi R, et al. The role of focal therapy in the management of localised prostate cancer: a systematic review. Eur Urol. 2014;66(4):732–51.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kelly WK, Halabi S, Carducci M, George D, Mahoney JF, Stadler WM, et al. Randomized, double-blind, placebo-controlled phase III trial comparing docetaxel and prednisone with or without bevacizumab in men with metastatic castration-resistant prostate cancer: Calgb 90401. J Clin Oncol. 2012;30(13):1534–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pili R, Haggman M, Stadler WM, Gingrich JR, Assikis VJ, Bjork A, et al. Phase II randomized, double-blind, placebo-controlled study of tasquinimod in men with minimally symptomatic metastatic castrate-resistant prostate cancer. J Clin Oncol. 2011;29(30):4022–8.

    Article  CAS  PubMed  Google Scholar 

  7. Bendell JC, Kurkjian C, Infante JR, Bauer TM, Burris 3rd HA, Greco FA, et al. A phase 1 study of the sachet formulation of the oral dual pi3k/mtor inhibitor bez235 given twice daily (bid) in patients with advanced solid tumors. Investig New Drugs. 2015;33(2):463–71.

    Article  CAS  Google Scholar 

  8. Madan RA, Arlen PM, Mohebtash M, Hodge JW, Gulley JL. Prostvac-vf: a vector-based vaccine targeting psa in prostate cancer. Expert Opin Investig Drugs. 2009;18(7):1001–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smith DC, Smith MR, Sweeney C, Elfiky AA, Logothetis C, Corn PG, et al. Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial. J Clin Oncol. 2013;31(4):412–9.

    Article  CAS  PubMed  Google Scholar 

  10. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity. 1995;3(6):673–82.

    Article  CAS  PubMed  Google Scholar 

  11. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998;281(5381):1305–8.

    Article  CAS  PubMed  Google Scholar 

  12. Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S, Peter ME. Apoptosis signaling by death receptors. Eur J Biochem. 1998;254(3):439–59.

    Article  CAS  PubMed  Google Scholar 

  13. Cretney E, McQualter JL, Kayagaki N, Yagita H, Bernard CC, Grewal IS, et al. TNF-related apoptosis-inducing ligand (trail)/apo2l suppresses experimental autoimmune encephalomyelitis in mice. Immunol Cell Biol. 2005;83(5):511–9.

    Article  CAS  PubMed  Google Scholar 

  14. Cretney E, Takeda K, Yagita H, Glaccum M, Peschon JJ, Smyth MJ. Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol. 2002;168(3):1356–61.

    Article  CAS  PubMed  Google Scholar 

  15. Hilliard B, Wilmen A, Seidel C, Liu TS, Goke R, Chen Y. Roles of tnf-related apoptosis-inducing ligand in experimental autoimmune encephalomyelitis. J Immunol. 2001;166(2):1314–9.

    Article  CAS  PubMed  Google Scholar 

  16. Sedger LM, Glaccum MB, Schuh JC, Kanaly ST, Williamson E, Kayagaki N, et al. Characterization of the in vivo function of TNF-alpha-related apoptosis-inducing ligand, trail/apo2l, using trail/apo2l gene-deficient mice. Eur J Immunol. 2002;32(8):2246–54.

    Article  CAS  PubMed  Google Scholar 

  17. Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM. An antagonist decoy receptor and a death domain-containing receptor for trail. Science. 1997;277(5327):815–8.

    Article  CAS  PubMed  Google Scholar 

  18. Pan G, O'Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, et al. The receptor for the cytotoxic ligand trail. Science. 1997;276(5309):111–3.

    Article  CAS  PubMed  Google Scholar 

  19. Walczak H, Degli-Esposti MA, Johnson RS, Smolak PJ, Waugh JY, Boiani N, et al. Trail-r2: A novel apoptosis-mediating receptor for trail. EMBO J. 1997;16(17):5386–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Degli-Esposti MA, Smolak PJ, Walczak H, Waugh J, Huang C-P, DuBose RF, et al. Cloning and characterization of trail-r3, a novel member of the emerging trail receptor family. J Exp Med. 1997;186:1165–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG. The novel receptor trail-r4 induces nf-kappab and protects against trail-mediated apoptosis, yet retains an incomplete death domain. Immunity. 1997;7(6):813–20.

    Article  CAS  PubMed  Google Scholar 

  22. Marsters SA, Sheridan JP, Pitti RM, Huang A, Skubatch M, Baldwin D, et al. A novel receptor for apo2l/trail contains a truncated death domain. Curr Biol. 1997;7(12):1003–6.

    Article  CAS  PubMed  Google Scholar 

  23. Pan G, Ni J, Yu G, Wei YF, Dixit VM. Trundd, a new member of the trail receptor family that antagonizes trail signalling. FEBS Lett. 1998;424(1-2):41–5.

    Article  CAS  PubMed  Google Scholar 

  24. Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C, et al. Osteoprotegerin is a receptor for the cytotoxic ligand trail. J Biol Chem. 1998;273(23):14363–7.

    Article  CAS  PubMed  Google Scholar 

  25. Kavurma MM, Bennett MR. Expression, regulation and function of trail in atherosclerosis. Biochem Pharmacol. 2008;75(7):1441–50.

    Article  CAS  PubMed  Google Scholar 

  26. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, et al. Safety and antitumor activity of recombinant soluble apo2 ligand. J Clin Invest. 1999;104(2):155–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med. 1999;5(2):157–63.

    Article  CAS  PubMed  Google Scholar 

  28. Kim K, Fisher MJ, Xu SQ, el-Deiry WS. Molecular determinants of response to trail in killing of normal and cancer cells. Clin Cancer Res. 2000;6(2):335–46.

    CAS  PubMed  Google Scholar 

  29. Nesterov A, Lu X, Johnson M, Miller GJ, Ivashchenko Y, Kraft AS. Elevated akt activity protects the prostate cancer cell line lncap from trail-induced apoptosis. J Biol Chem. 2001;276(14):10767–74.

    Article  CAS  PubMed  Google Scholar 

  30. Nguyen T, Zhang XD, Hersey P. Relative resistance of fresh isolates of melanoma to tumor necrosis factor-related apoptosis-inducing ligand (trail)-induced apoptosis. Clin Cancer Res. 2001;7(3 Suppl):966s–73s.

    CAS  PubMed  Google Scholar 

  31. Bonavida B, Ng CP, Jazirehi A, Schiller G, Mizutani Y. Selectivity of trail-mediated apoptosis of cancer cells and synergy with drugs: the trail to non-toxic cancer therapeutics (review). Int J Oncol. 1999;15(4):793–802.

    CAS  PubMed  Google Scholar 

  32. Voelkel-Johnson C, King DL, Norris JS. Resistance of prostate cancer cells to soluble TNF-related apoptosis-inducing ligand (trail/apo2l) can be overcome by doxorubicin or adenoviral delivery of full-length trail. Cancer Gene Ther. 2002;9(2):164–72.

    Article  CAS  PubMed  Google Scholar 

  33. Griffith TS, Stokes B, Kucaba TA, Earel Jr JK, VanOosten RL, Brincks EL, et al. Trail gene therapy: From preclinical development to clinical application. Curr Gene Ther. 2009;9(1):9–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Merino D, Lalaoui N, Morizot A, Solary E, Micheau O. Trail in cancer therapy: present and future challenges. Expert Opin Ther Targets. 2007;11(10):1299–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. MacFarlane M, Ahmad M, Srinivasula SM, Fernandes-Alnemri T, Cohen GM, Alnemri ES. Identification and molecular cloning of two novel receptors for the cytotoxic ligand trail. J Biol Chem. 1997;272(41):25417–20.

    Article  CAS  PubMed  Google Scholar 

  36. Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D, et al. Control of trail-induced apoptosis by a family of signaling and decoy receptors. Science. 1997;277(5327):818–21.

    Article  CAS  PubMed  Google Scholar 

  37. Dai X, Zhang J, Arfuso F, Chinnathambi A, Zayed ME, Alharbi SA, et al. Targeting TNF-related apoptosis-inducing ligand (trail) receptor by natural products as a potential therapeutic approach for cancer therapy. Exp Biol Med. 2015;240:760–73.

    Article  CAS  Google Scholar 

  38. Wold WS, Toth K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr Gene Ther. 2013;13(6):421–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee J, Hampl M, Albert P, Fine HA. Antitumor activity and prolonged expression from a trail-expressing adenoviral vector. Neoplasia. 2002;4(4):312–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tanaka T, Manome Y, Wen P, Kufe DW, Fine HA. Viral vector-mediated transduction of a modified platelet factor 4 cdna inhibits angiogenesis and tumor growth. Nat Med. 1997;3(4):437–42.

    Article  CAS  PubMed  Google Scholar 

  41. Griffith TS, Anderson RD, Davidson BL, Williams RD, Ratliff TL. Adenoviral-mediated transfer of the tnf-related apoptosis-inducing ligand/apo-2 ligand gene induces tumor cell apoptosis. J Immunol. 2000;165(5):2886–94.

    Article  CAS  PubMed  Google Scholar 

  42. Griffith TS, Broghammer EL. Suppression of tumor growth following intralesional therapy with trail recombinant adenovirus. Mol Ther. 2001;4(3):257–66.

    Article  CAS  PubMed  Google Scholar 

  43. Norian LA, Kresowik TP, Rosevear HM, James BR, Rosean TR, Lightfoot AJ, et al. Eradication of metastatic renal cell carcinoma after adenovirus-encoded tnf-related apoptosis-inducing ligand (trail)/cpg immunotherapy. PLoS One. 2012;7(2):e31085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. VanOosten RL, Griffith TS. Activation of tumor-specific cd8+ t cells after intratumoral Ad5-trail/cpg oligodeoxynucleotide combination therapy. Cancer Res. 2007;67(24):11980–90.

    Article  CAS  PubMed  Google Scholar 

  45. Siemens DR, Austin JC, Hedican SP, Tartaglia J, Ratliff TL. Viral vector delivery in solid-state vehicles: gene expression in a murine prostate cancer model. J Natl Cancer Inst. 2000;92(5):403–12.

    Article  CAS  PubMed  Google Scholar 

  46. Griffith TS, Konety BR, Joudi FN, Aubert H, Cohen MB, Ratliff TL, et al. Phase I study of Ad5-trail in men wih clinically organ confined prosate cancer. Cancer Res. 2007;67(9 Suppl):4870.

    Google Scholar 

  47. Siemens DR, Elzey BD, Lubaroff DM, Bohlken C, Jensen RJ, Swanson AK, et al. Cutting edge: restoration of the ability to generate CTL in mice immune to adenovirus by delivery of virus in a collagen-based matrix. J Immunol. 2001;166(2):731–5.

    Article  CAS  PubMed  Google Scholar 

  48. Mahalingam D, Szegezdi E, Keane M, de Jong S, Samali A. Trail receptor signalling and modulation: are we on the right trail? Cancer Treat Rev. 2009;35(3):280–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Griffith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Narayan, V., Konety, B.R., Griffith, T.S. (2017). Focal Therapy for Prostate Cancer: A Molecular Biology Approach with TRAIL. In: Polascik, T. (eds) Imaging and Focal Therapy of Early Prostate Cancer. Current Clinical Urology. Springer, Cham. https://doi.org/10.1007/978-3-319-49911-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49911-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49910-9

  • Online ISBN: 978-3-319-49911-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics