Skip to main content

On Linear Hulls and Trails

  • Conference paper
  • First Online:
Progress in Cryptology – INDOCRYPT 2016 (INDOCRYPT 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10095))

Included in the following conference series:

Abstract

This paper improves the understanding of linear cryptanalysis by highlighting some previously overlooked aspects. It shows that linear hulls are sometimes formed already in a single round, and that overlooking such hulls may lead to a wrong estimation of the linear correlation, and thus of the data complexity. It shows how correlation matrices can be used to avoid this, and provides a tutorial on how to use them properly. By separating the input and output masks from the key mask it refines the formulas for computing the expected correlation and the expected linear potential. Finally, it shows that when the correlation of a hull is not properly estimated (e.g., by using the correlation of a single trail as the correlation of the hull), the success probability of Matsui’s Algorithm 1 drops, sometimes drastically. It also shows that when the trails composing the hull are properly accounted for, more than a single key bit can be recovered using Algorithm 1. All the ideas presented in this paper are followed by examples comparing previous methods to the corrected ones, and verified experimentally with reduced-round versions of Simon32/64.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.: Camellia: a 128-bit block cipher suitable for multiple platforms — design and analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 39–56. Springer, Heidelberg (2001). doi:10.1007/3-540-44983-3_4

    Chapter  Google Scholar 

  2. Ashur, T., Rijmen, V.: On linear hulls and trails in simon. IACR Cryptology ePrint Archive 2016, 88 (2016). http://eprint.iacr.org/2016/088

  3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint Archive, Report 2013/404 (2013). http://eprint.iacr.org/

  4. Biham, E.: On Matsui’s linear cryptanalysis. In: Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 341–355. Springer, Heidelberg (1995). doi:10.1007/BFb0053449

    Google Scholar 

  5. Biryukov, A., Cannière, C., Quisquater, M.: On multiple linear approximations. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28628-8_1

    Chapter  Google Scholar 

  6. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In: Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer, Heidelberg (1995). doi:10.1007/BFb0053450

    Google Scholar 

  7. Daemen, J., Govaerts, R., Vandewalle, J.: Correlation matrices. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 275–285. Springer, Heidelberg (1995). doi:10.1007/3-540-60590-8_21

    Chapter  Google Scholar 

  8. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional linear cryptanalysis of reduced round serpent. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 203–215. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70500-0_15

    Chapter  Google Scholar 

  9. Kaliski, B.S., Robshaw, M.J.B.: Linear cryptanalysis using multiple approximations. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer, Heidelberg (1994). doi:10.1007/3-540-48658-5_4

    Google Scholar 

  10. Keliher, L., Meijer, H., Tavares, S.: New method for upper bounding the maximum average linear hull probability for SPNs. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 420–436. Springer, Heidelberg (2001). doi:10.1007/3-540-44987-6_26

    Chapter  Google Scholar 

  11. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994). doi:10.1007/3-540-48285-7_33

    Google Scholar 

  12. Murphy, S.: The effectiveness of the linear hull effect. J. Math. Cryptol. 6(2), 137–147 (2012). http://dx.doi.org/10.1515/jmc-2011-0025

    Article  MathSciNet  MATH  Google Scholar 

  13. Nyberg, K.: Linear approximation of block ciphers. In: Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995). doi:10.1007/BFb0053460

    Google Scholar 

  14. Röck, A., Nyberg, K.: Generalization of Matsui’s algorithm 1 to linear hull for key-alternating block ciphers. Des. Codes Cryptograph. 66(1–3), 175–193 (2013). http://dx.doi.org/10.1007/s10623-012-9679-1

    Article  MATH  Google Scholar 

  15. Shi, D., Hu, L., Sun, S., Song, L.: Linear (hull) cryptanalysis of round-reduced versions of KATAN. Cryptology ePrint Archive, Report 2015/964 (2015). http://eprint.iacr.org/

  16. Shi, D., Hu, L., Sun, S., Song, L., Qiao, K., Ma, X.: Improved linear (hull) cryptanalysis of round-reduced versions of SIMON. Cryptology ePrint Archive, Report 2014/973 (2014). http://eprint.iacr.org/

  17. Sun, S., Hu, L., Wang, M., Wang, P., Qiao, K., Ma, X., Shi, D., Song, L., Fu, K.: Towards finding the best characteristics of some bit-oriented block ciphers and automatic enumeration of (related-key) differential and linear characteristics with predefined properties. Cryptology ePrint Archive, Report 2014/747 (2014). http://eprint.iacr.org/

Download references

Acknowledgments

The authors would like to thank Kaisa Nyberg and the anonymous reviewers for their comments. This work was partially supported by the Research Council KU Leuven, OT/13/071.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomer Ashur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Ashur, T., Rijmen, V. (2016). On Linear Hulls and Trails. In: Dunkelman, O., Sanadhya, S. (eds) Progress in Cryptology – INDOCRYPT 2016. INDOCRYPT 2016. Lecture Notes in Computer Science(), vol 10095. Springer, Cham. https://doi.org/10.1007/978-3-319-49890-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49890-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49889-8

  • Online ISBN: 978-3-319-49890-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics