Abstract
Despite topic models have been successfully used to reveal hidden orchestration patterns from service logs, the potential uses of their interrelationships have yet to be explored. In particular, the popularity of an orchestration pattern is a leading indicator of other orchestrations in many situations. Indeed, the research in capturing relationships by induced networks has been active in some areas, such as in spatial problems. In this paper, we propose a structure discovery process to reveal relationship networks among service orchestrations. In practice, more robust business logic can be formulated by having a good understanding of these relationships that leads to efficiency gains. Our proposed interrelationship discovery process is performed by a set of optimizations with adaptive regularization. These features make our proposed solution efficient and self-adjusted to the dynamics in service environments. The results from our extensive experiments on service consumption logs confirm the effectiveness of our proposed solution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bhiri, S., Gaaloul, W., Godart, C.: Mining and improving composite web services recovery mechanisms. Int. J. Web Serv. Res. (IJWSR) 5(2), 23–48 (2008)
Blei, D.M.: Probabilistic topic models. Commun. ACM 55(4), 77–84 (2012)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Borwein, J.M., Lewis, A.S.: Convex analysis and nonlinear optimization: theory and examples, vol. 3. Springer, Heidelberg (2010)
Chu, V.W., Wong, R.K., Chen, F., Chi, C.H.: Web service recommendations based on time-aware Bayesian networks. In: 2015 IEEE International Congress on Big Data (BigData Congress), pp. 359–366. IEEE (2015)
Chu, V.W., Wong, R.K., Chen, F., Fong, S., Hung, P.C.: Self-regularized causal structure discovery for trajectory-based networks. J. Comput. Syst. Sci. 82(4), 594–609 (2016)
Chu, V.W., Wong, R.K., Chi, C.H., Hung, P.C.: Web service orchestration topic mining. In: 2014 IEEE International Conference on Web Services (ICWS), pp. 225–232. IEEE (2014)
Dondelinger, F., Lèbre, S., Husmeier, D.: Non-homogeneous dynamic Bayesian networks with Bayesian regularization for inferring gene regulatory networks with gradually time-varying structure. Mach. Learn. 90(2), 191–230 (2013)
Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al.: Least angle regression. Ann. Stat. 32(2), 407–499 (2004)
Fuchs, J.J.: Recovery of exact sparse representations in the presence of bounded noise. Inf. Theor. IEEE Trans. 51(10), 3601–3608 (2005)
Gaaloul, W., Baïna, K., Godart, C.: Log-based mining techniques applied to web service composition reengineering. Serv. Oriented Comput. Appl. 2(2–3), 93–110 (2008)
Garrett, J.J.: Ajax: A new approach to web applications, 7(3) (2007). http://adaptivepath.com/ideas/essays/archives/000385.php
Grzegorczyk, M., Husmeier, D.: Non-stationary continuous dynamic Bayesian networks. In: NIPS, pp. 682–690 (2009)
Grzegorczyk, M., Husmeier, D.: Non-homogeneous dynamic Bayesian networks for continuous data. Mach. Learn. 83(3), 355–419 (2011)
He, H., Garcia, E.A.: Learning from imbalanced data. Knowl. Data Eng. IEEE Trans. 21(9), 1263–1284 (2009)
Kapuruge, M., Han, J., Colman, A.: Representing service-relationships as first class entities in service orchestrations. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.) Web Information Systems Engineering - WISE 2012. LNCS, vol. 7651, pp. 257–270. Springer, Heidelberg (2012)
Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistics (NRL) 52(1), 7–21 (2005)
Liang, Q.A., Chung, J.Y., Miller, S., Ouyang, Y.: Service pattern discovery of web service mining in web service registry-repository. In: IEEE International Conference on e-Business Engineering, 2006. ICEBE 2006, pp. 286–293. IEEE (2006)
Madsen, H., Thyregod, P.: Introduction to General and Generalized Linear Models. CRC Press, Boca Raton (2010)
Mairal, J., Yu, B.: Complexity analysis of the lasso regularization path. In: ICML (2012)
Mcauliffe, J.D., Blei, D.M.: Supervised topic models. In: NIPS, pp. 121–128 (2008)
Murphy, K.: Dynamic Bayesian Networks: Representation, Inference and Learning. Ph.D. thesis, UC Berkeley, Computer Science Division (2002)
Peltz, C.: Web services orchestration and choreography. Computer 36(10), 46–52 (2003)
Ramage, D., Dumais, S.T., Liebling, D.J.: Characterizing microblogs with topic models. In: ICWSM (2010)
Ramage, D., Hall, D., Nallapati, R., Manning, C.D.: Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. vol. 1, pp. 248–256. Association for Computational Linguistics (2009)
Ramage, D., Manning, C.D., Dumais, S.: Partially labeled topic models for interpretable text mining. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 457–465. ACM (2011)
Robinson, J.W., Hartemink, A.J.: Non-stationary dynamic Bayesian networks. In: NIPS, pp. 1369–1376 (2008)
Robinson, J.W., Hartemink, A.J.: Learning non-stationary dynamic Bayesian networks. J. Mach. Learn. Res. 11, 3647–3680 (2010)
Schmidt, M., Niculescu-Mizil, A., Murphy, K., et al.: Learning graphical model structure using L1-regularization paths. AAAI 7, 1278–1283 (2007)
Song, L., Kolar, M., Xing, E.P.: Time-varying dynamic Bayesian networks. In: NIPS, pp. 1732–1740 (2009)
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Stat. Soc. Ser. B (Methodological) 58, 267–288 (1996)
Wang, Z., Kuruoglu, E.E., Yang, X., Xu, Y., Huang, T.S.: Time varying dynamic Bayesian network for nonstationary events modeling and online inference. Signal Proc. IEEE Trans. 59(4), 1553–1568 (2011)
Wetzstein, B., Danylevych, O., Leymann, F., Bitsaki, M., Nikolaou, C., van den Heuvel, W.J., Papazoglou, M.: Towards monitoring of key performance indicators across partners in service networks. In: Workshop on Service Monitoring, Adaptation and Beyond, p. 7 (2009)
Wetzstein, B., Karastoyanova, D., Leymann, F.: Towards management of sla-aware business processes based on key performance indicators. In: 9th Workshop on Business Process Modeling, Development and Support (BPMDS 2008) (2008)
Yan, X., Guo, J., Lan, Y., Cheng, X.: A biterm topic model for short texts. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1445–1456. International World Wide Web Conferences Steering Committee (2013)
Zdun, U., Voelter, M., Kircher, M.: Design and implementation of an asynchronous invocation framework for web services. In: Jeckle, M., Zhang, L.-J. (eds.) ICWS-Europe 2003. LNCS, vol. 2853, pp. 64–78. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39872-1_6
Zhao, W.X., Jiang, J., Weng, J., He, J., Lim, E.-P., Yan, H., Li, X.: Comparing twitter and traditional media using topic models. In: Clough, P., Foley, C., Gurrin, C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp. 338–349. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20161-5_34
Zheng, G., Bouguettaya, A.: Service mining on the web. Services Comput. IEEE Trans. 2(1), 65–78 (2009)
Zhu, J., Ahmed, A., Xing, E.P.: Medlda: maximum margin supervised topic models. J. Mach. Learn. Res. 13(1), 2237–2278 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Chu, V.W., Wong, R.K., Chen, F., Chi, CH. (2016). Interrelationships of Service Orchestrations. In: Li, J., Li, X., Wang, S., Li, J., Sheng, Q. (eds) Advanced Data Mining and Applications. ADMA 2016. Lecture Notes in Computer Science(), vol 10086. Springer, Cham. https://doi.org/10.1007/978-3-319-49586-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-49586-6_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-49585-9
Online ISBN: 978-3-319-49586-6
eBook Packages: Computer ScienceComputer Science (R0)