Skip to main content

Localized Load Balancing in RFID Systems

  • Conference paper
  • First Online:
Book cover Theory and Practice of Natural Computing (TPNC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10071))

Included in the following conference series:

Abstract

Radio Frequency Identification (RFID) technology consists of uniquely identifiable and inexpensive tags as well as readers that monitor these tags with the help of radio frequency signal. Balancing the load of tags among the readers in a multi-reader RFID system is an important issue to successfully collect data from all the tags. In this paper we try to minimize the reading time of the readers by distributing the tags among the readers in the RFID system. We introduce a Cellular Automaton (CA) based localized load balancing algorithm to transfer tags from highly loaded readers to readers with lower number of tags associated with them. Our simulation results exhibit that our algorithm outperforms the existing algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, K., Alsalih, W., Hassanein, H.: Set-cover approximation algorithms for load-aware readers placement in rfid networks. In: 2011 IEEE International Conference on Communications (ICC), pp. 1–6, June 2011

    Google Scholar 

  2. Ali, K., Hassanein, H.S., Alsalih, W.: Using neighbor and tag estimations for redundant reader eliminations in rfid networks. In: 2011 IEEE Wireless Communications and Networking Conference, pp. 832–837, March 2011

    Google Scholar 

  3. Capetanakis, J.: Tree algorithms for packet broadcast channels. IEEE Trans. Inf. Theory 25(5), 505–515 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Q., Hoilun, N., Yunhao, L.: Cardinality estimation for large-scale rfid systems. In: Sixth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 30–39 (2008)

    Google Scholar 

  5. Chiu, D., Jain, R.: Analysis of the increase and decrease algorithms for congestion avoidance in computer networks. Comput. Netw. ISDN Syst. 17(1), 1–14 (1989)

    Article  MATH  Google Scholar 

  6. Choudhury, S.: Cellular automaton based algorithms for wireless sensor networks. Canadian theses (2012)

    Google Scholar 

  7. Choudhury, S., Salomaa, K., Akl, S.G.: Cellular automaton-based algorithms for the dispersion of mobile wireless sensor networks. Int. J. Parallel Emergent Distrib. Syst. 29(2), 147–177 (2014)

    Article  Google Scholar 

  8. Dhas, V.G., Muthukaruppan, R., Balakrishnan, K., Ganesan, R.: Optimal Solution for RFID Load Balancing. In: Meghanathan, N., Boumerdassi, S., Chaki, N., Nagamalai, D. (eds.) ASUC/NeCoM/VLSI/WeST/WiMoN -2010. CCIS, vol. 90, pp. 41–49. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14493-6_5

    Chapter  Google Scholar 

  9. Dominikus, S.: Medassist - a privacy preserving application using rfid tags. In: IEEE International Conference on RFID-Technologies and Applications (RFID-TA), pp. 370–375 (2011)

    Google Scholar 

  10. Dong, C., Guiran, C., Jiajia, L., Jie, J.: Study on the interconnection architecture and access technology for internet of things. In: International Conference on Computer Science and Service System (CSSS), pp. 1744–1748 (2011)

    Google Scholar 

  11. Dong, Q., Shukla, A., Shrivastava, V., Agrawal, D., Banerjee, S., Kar, K.: Load balancing in large-scale rfid systems. In: IEEE INFOCOM 2007–26th IEEE International Conference on Computer Communications, pp. 2281–2285, May 2007

    Google Scholar 

  12. Floerkemeier, C.: Transmission control scheme for fast rfid object identification. In: Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops 2006), pp. 457–462 (2006)

    Google Scholar 

  13. Garzon, M.: Models of Massive Parallelism: Analysis of Cellular Automata and Neural Networks. Springer, Heidelberg (1995)

    Book  MATH  Google Scholar 

  14. Hsu, C.H., Chen, Y.M., Yang, C.T.: A layered optimization approach for redundant reader elimination in wireless rfid networks. In: The 2nd IEEE Asia-Pacific Service Computing Conference, pp. 138–145, December 2007

    Google Scholar 

  15. Irfan, N., Yagoub, M.C.E., Hettak, K.: Redundant reader elimination approaches for RFID networks. In: Kamel, M., Karray, F., Gueaieb, W., Khamis, A. (eds.) AIS 2011. LNCS (LNAI), vol. 6752, pp. 396–405. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21538-4_39

    Chapter  Google Scholar 

  16. Jang, S., Lee, J.: Fuzzy logic control-based load balancing agent for distributed RFID systems. In: Huang, D.-S., et al. (eds.) ICIC 2008. LNCS, vol. 5226, pp. 653–660. Springer, Heidelberg (2008)

    Google Scholar 

  17. Jihoon, M., Wonjun, L.: Adaptive splitting protocols for rfid tag collision arbitration. In: 7th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Florence, Italy (2006)

    Google Scholar 

  18. Lawrence, G.: Aloha packet system with and without slots and capture. In: ACMSIGCOMM Computer Communication Review, vol. 5, pp. 28–42, April 1975

    Google Scholar 

  19. Murali, K., Thyaga, N.: Fast and reliable estimation schemes in rfid systems. In: 12th Annual International Conference on Mobile Computing and Networking, Los Angeles, CA, USA (2006)

    Google Scholar 

  20. Qunfeng, D., Shukla, A., Shrivastava, V., Agrawal, D., Banerjee, S., Kar, K.: Load balancing in large-scale rfid systems. In: IEEE INFOCOM 2007–26th IEEE International Conference on Computer Communications, pp. 2281–2285, May 2007

    Google Scholar 

  21. Rashid, N., Choudhury, S., Salomaa, K.: CARRE: cellular automaton based redundant readers elimination in RFID networks. In: 2016 IEEE International Conference on Communications, ICC 2016, Kuala Lumpur, Malaysia, 22–27 May 2016, pp. 1–6 (2016)

    Google Scholar 

  22. Vinod, N., Lixin, G.: Energy-aware tag anti-collision protocols for rfid systems. In: Fifth IEEE International Conference on Pervasive Computing and Communications, pp. 23–36, March 2007

    Google Scholar 

  23. Xie, K., Cao, J., Wen, J.: Distributed load-balancing algorithm for fast tag reading. Int. J. Parallel Emergent Distrib. Syst. 28(5), 434–448 (2012)

    Article  Google Scholar 

  24. Yoon, W., Vaidya, N.: Rfid reader collision problem: performance analysis and medium access. Wireless Communications and Mobile Computing, pp. 1–24, April 2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salimur Choudhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Munir, A., Hossen, M.S., Choudhury, S. (2016). Localized Load Balancing in RFID Systems. In: Martín-Vide, C., Mizuki, T., Vega-Rodríguez, M. (eds) Theory and Practice of Natural Computing. TPNC 2016. Lecture Notes in Computer Science(), vol 10071. Springer, Cham. https://doi.org/10.1007/978-3-319-49001-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49001-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49000-7

  • Online ISBN: 978-3-319-49001-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics