Skip to main content

Self-adaptive Ensemble Differential Evolution with Sampled Parameter Values for Unit Commitment

  • Conference paper
  • First Online:
Swarm, Evolutionary, and Memetic Computing (SEMCCO 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9873))

Included in the following conference series:

  • 731 Accesses

Abstract

In literature, empirically and theoretically, it has been well-demonstrated that the performance of differential evolution (DE) is sensitive to the choice of the mutation and crossover strategies and their associated control parameters. According to the No Free Lunch theorem, a single set of well-tuned combination of strategies and their associated parameter combination is not suitable for optimization problems having different characteristics. In addition, different mutation and crossover strategies with different parameter settings can be appropriate during different stages of the evolution. Based on this observation, DE with an ensemble of mutation and crossover strategies and their associated control parameters referred to as EPSDE was proposed. However, it has been observed that the fixed discrete parameter values as in EPSDE may not yield optimal performance. In this paper, we propose self-adaptive DE algorithm (Sa-EPSDE) with a set of mutation strategies while their associated parameter values F and CR are sampled using mean and standard deviation values. In addition, the probability of selecting a combination to produce an offspring at a particular generation during the evolution process depends on the success of the combination. The performance of the proposed Sa-EPSDE algorithm is evaluated on a set of 14 bound-constrained problems designed for Conference on Evolutionary Computation (CEC) 2005. In order to validate the performance of proposed Sa-EPSDE algorithm on real-world applications, the algorithm is hybridized with a simple priority listing method and applied to solve unit commitment problem by considering 10-, 20-, 40-, 60-, 80- and 100-bus systems for one day scheduling period. The results showed that the proposed method obtained superior performance against other compared algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15, 4–31 (2011)

    Article  Google Scholar 

  2. Das, S., Konar, A.: Automatic image pixel clustering with an improved differential evolution. Appl. Soft Comput. 9(1), 226–236 (2009)

    Article  Google Scholar 

  3. Mallipeddi, R., et al.: Efficient constraint handling for optimal reactive power dispatch problems. Swarm Evol. Comput. 5, 28–36 (2012)

    Article  Google Scholar 

  4. Mallipeddi, R., et al.: Robust adaptive beamforming based on covariance matrix reconstruction for look direction mismatch. Prog. Electromagn. Res. Lett. 25, 37–46 (2011)

    Article  Google Scholar 

  5. Venu, M.K., Mallipeddi, R., Suganthan, P.N.: Fiber Bragg grating sensor array interrogation using differential evolution. Optoelectron. Adv. Mater. Rapid Commun. 2, 682–685 (2008)

    Google Scholar 

  6. Gämperle, R., Müller, S.D., Koumoutsakos, P.: A parameter study for differential evolution. In: Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation, pp. 293–298. WSEAS Press, Interlaken, Switzerland (2002)

    Google Scholar 

  7. Liu, J., Lampinen. J.: On setting the control parameter of the differential evolution method. In: Proceedings of MENDEL 2002 8th International Conference on Soft Computing (2002)

    Google Scholar 

  8. Jingqiao, Z., Sanderson. A.C.: An approximate gaussian model of differential evolution with spherical fitness functions. In: IEEE Congress on Evolutionary Computation (2007)

    Google Scholar 

  9. Mallipeddi, R., Mallipeddi, S., Suganthan, P.N., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11, 1679–1696 (2011)

    Article  MATH  Google Scholar 

  10. Omran, Mahamed, G.,H., Salman, A., Engelbrecht, Andries, P.: Self-adaptive differential evolution. In: Hao, Y., Liu, J., Wang, Y., Cheung, Y.-m., Yin, H., Jiao, L., Ma, J., Jiao, Y.-C. (eds.) CIS 2005. LNCS (LNAI), vol. 3801, pp. 192–199. Springer, Heidelberg (2005). doi:10.1007/11596448_28

    Chapter  Google Scholar 

  11. Brest, J., et al.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10, 646–657 (2006)

    Article  Google Scholar 

  12. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13, 398–417 (2009)

    Article  Google Scholar 

  13. Tvrdik, J.: Adaptation in differential evolution: a numerical comparison. Appl. Soft Compu. 9, 1149–1155 (2009)

    Article  Google Scholar 

  14. Mallipeddi, R., Suganthan, P.N.: Differential evolution algorithm with ensemble of parameters and mutation and crossover strategies. In: Panigrahi, B.K., Das, S., Suganthan, P.N., Dash, S.S. (eds.) SEMCCO 2010. LNCS, vol. 6466, pp. 71–78. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17563-3_9

    Chapter  Google Scholar 

  15. Tanabe, R., Fukunaga. A.: Evaluating the performance of SHADE on CEC 2013 benchmark problems. In: IEEE Congress on Evolutionary Computation (2013)

    Google Scholar 

  16. Tanabe, R., Fukunaga. A.S.: Improving the search performance of SHADE using linear population size reduction. In: IEEE Congress on Evolutionary Computation (2014)

    Google Scholar 

  17. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Natural Computing Series. Springer, Berlin (2005)

    MATH  Google Scholar 

  18. Zaharie, D.: Critical values for the control parameters of differential evolution. In: Proceedings of 8th International Conference on Soft Computing, MENDEL 2002, Brno, Czech Republic (2002)

    Google Scholar 

  19. Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft. Comput. 9, 448–462 (2005)

    Article  MATH  Google Scholar 

  20. Zaharie, D.: Control of population diversity and adaptation in differential evolution algorithms. In: Proceedings of the 9th International Conference on Soft Computing, Brno, pp. 41–46 (2003)

    Google Scholar 

  21. Abbass, H.A.: The self-adaptive pareto differential evolution algorithm. In: IEEE Congress on Evolutionary Computation, pp. 831–836 (2002)

    Google Scholar 

  22. Zhang, J.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13, 945–958 (2009)

    Article  Google Scholar 

  23. Shi-Zheng, Z., Suganthan. P.N.: Comprehensive comparison of convergence performance of optimization algorithms based on nonparametric statistical tests. In: IEEE Congress on Evolutionary Computation (2012)

    Google Scholar 

  24. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.-P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. In: Proceedings of Congress on Evolutionary Computation, pp. 1–50 (2005)

    Google Scholar 

  25. Kazarlis, S.A., Bakirtzis, A.G., Petridis, V.: A genetic algorithm solution to the unit commitment problem. IEEE Trans. Power Syst. 11, 83–92 (1996)

    Article  Google Scholar 

  26. Juste, K.A., Kita, H., Tanaka, E., Hasegawa, J.: An evolutionary programming solution to the unit commitment problem. IEEE Trans. Power Syst. 14, 1452–1459 (1999)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Singapore National Research Foundation (NRF) under its Campus for Research Excellence and Technological Enterprise (CREATE) programme, and Cambridge Advanced Research Centre in Energy Efficiency in Singapore (CARES), C4T project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ponnuthurai Nagaratnam Suganthan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Lynn, N., Mallipeddi, R., Suganthan, P.N. (2016). Self-adaptive Ensemble Differential Evolution with Sampled Parameter Values for Unit Commitment. In: Panigrahi, B., Suganthan, P., Das, S., Satapathy, S. (eds) Swarm, Evolutionary, and Memetic Computing. SEMCCO 2015. Lecture Notes in Computer Science(), vol 9873. Springer, Cham. https://doi.org/10.1007/978-3-319-48959-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48959-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48958-2

  • Online ISBN: 978-3-319-48959-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics