Skip to main content

The Extreme Biology of Meteorites: Their Role in Understanding the Origin and Distribution of Life on Earth and in the Universe

  • Chapter
  • First Online:
Adaption of Microbial Life to Environmental Extremes

Abstract

Meteorites have captured our fascination since our early history – they have evoked awe, fear, an irresistible curiosity, and numerous lively debates. Former historians have indicated that many of the ancient cultures and civilizations in Europe, Africa, Asia, the Inuit, and the native Indians in America regarded both the meteorite and the location of their fall as sacred. Thus, they used the meteorites as religious objects or for craft design like jewelry, weapons, or even practical things like tools and horse shoes. Today, meteorites continue to capture our fascination through popular cultural formats such as science fiction and also as a scientific window that reveals the secrets of the Solar System formation. Within academia, meteorites have always fomented keen scientific debate. It was not until the early nineteenth century that the cosmic origin of meteorites, i.e., being truly not tellurian, was approved by the scientific community after the late eighteenth-century work of Ernst F. Chladni (1794). This implied for the first time that there are other smaller bodies in the sky besides the Moon. After this, several other lively debates followed on controversial findings and hypotheses around the role of meteorites in the universe and for the evolutionary course of life on Earth, often in connection with the profound difficulties to approach this subject in an adequate scientific way. Principally the different types of meteorites (asteroids, meteors, etc.) can be viewed as a most extreme or exotic substrate, habitat, and transport mode of chemicals and possibly even of cell-based life forms for several reasons:

  1. (i)

    They have experienced a remarkable history since their origin as condensates from the Solar Nebula, more or less metamorphosed or molten fragments of asteroids, or rocks from Mars or our Moon.

  2. (ii)

    The meteorites have been exposed to multiple extreme conditions ranging from milliseconds to billions of years duration when traveling through the interplanetary space, until they fell down on an astronomical body like Earth.

  3. (iii)

    Once on Earth, the meteorites get exposed to different weathering conditions, which often makes it a challenge to retrieve their former history in an unambiguous way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott A (2001) Resuscitated ‘alien’ microbes stir up an Italian storm. Nature 411:229

    Article  CAS  PubMed  Google Scholar 

  • Agee CB, Wilson NV, McCubbin FM, Ziegler K, Polyak VJ, Sharp ZD, Asmerom Y, Nunn MH, Shaheen R, Thiemens MH, Steele A, Fogel ML, Bowden R, Glamoclija M, Zhang Z, Elardo SM (2013) Unique meteorite from early Amazonian Mars: water-rich basaltic breccia Northwest Africa 7034. Science 339:780–785

    Article  CAS  PubMed  Google Scholar 

  • Alexander CM, Bowden R, Fogel ML, Howard KT, Herd CD, Nittler LR (2012) The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337:721–723

    Article  CAS  PubMed  Google Scholar 

  • Al-Kathiri A, Hofmann BA, Jull AJT, Gnos E (2005) Weathering of meteorites from Oman: correlation of chemical and mineralogical weathering proxies with 14C terrestrial ages and the influence of soil chemistry. Meteorit Planet Sci 40:1215–1239

    Article  CAS  Google Scholar 

  • Antony CP, Deepak Kumaresan D, Lucia Ferrando L, Boden R, Moussard H, Scavino AF, Shouche YS, Colin Murrell JC (2010) Active methylotrophs in the sediments of Lonar Lake, a saline and alkaline ecosystem formed by meteor impact. ISME J 4:1470–1480

    Article  CAS  PubMed  Google Scholar 

  • Armstrong JC, Wells LE, Gonzalez G (2002) Rummaging through Earth’s attic for remains of ancient life. Icarus 160:183–196

    Article  CAS  Google Scholar 

  • Bada JL, Glavin DP, McDonald GD, Becker L (1998) A Search for endogenous amino acids in Martian meteorite ALH84001. Science 279:362–365

    Article  CAS  PubMed  Google Scholar 

  • Baldwin RB (1963) The measure of the Moon. University of Chicago Press, Chicago, p. 488

    Google Scholar 

  • Barber DJ, Scott ERD (2002) Origin of supposedly biogenic magnetite in the Martian meteorite Allan Hills ALH84001. Proc Natl Acad Sci U S A 99:6556–6561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell EA, Boehnke P, Harrison TM, Mao WL (2015) Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc Natl Acad Sci U S A 112:14518–14521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belloche A, Garrod RT, Müller HS, Menten KM (2014) Detection of a branched alkyl molecule in the interstellar medium: iso-propyl cyanide. Science 345:1584–1587

    Article  CAS  PubMed  Google Scholar 

  • Benzerara K, Chapon V, Moreira D, Lopez-Garcia P, Guyot F, Heulin T (2006) Microbial diversity on the Tatahouine meteorite. Meteorit Planet Sci 41:1249–1265

    Article  CAS  Google Scholar 

  • Bera PP, Nuevo M, Materese CK, Sandford SA, Lee TJ (2016) Mechanisms for the formation of thymine under astrophysical conditions and implications for the origin of life. J Chem Phys 144:144308. doi:10.1063/1.4945745

    Article  PubMed  CAS  Google Scholar 

  • Blamey NJF, Parnell J, McMahon S, Mark DF, Tomkinson T, Lee TM, Shivak J, Izawa MRM, Banerjee NR, Flemming RL (2015) Evidence for methane in Martian meteorites. Nat Commun 6:7399. doi:10.1038/ncomms8399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bland PA, Smith TB, Jull AJT, Berry FJ, Bevan AWR, Cloudt S, Pillinger CT (1996) The flux of meteorites to the Earth over the last 50 000 years. Mon Not R Astron Soc 283:551–565

    Article  CAS  Google Scholar 

  • Bland PA (2001) In: Peucker-Ehrenbrink B, Schmitz B (eds) Accretion of extraterrestrial matter throughout Earth’s history. Springer Publisher, Chapter 15, pp. 267–303

    Google Scholar 

  • Bland PA, Zolensky ME, Benedix GK, Sephton MA (2006) Weathering of chondritic meteorites. In: Lauretta DS, McSween JHY (eds) Meteorites and the early solar system II. University of Arizona Press, Tucson, pp. 853–867

    Google Scholar 

  • Bouvier A, Wadhwa M (2010) The age of the Solar System redefined by the oldest Pb–Pb age of a meteoritic inclusion. Nat Geosci 3:637–641

    Article  CAS  Google Scholar 

  • Boyd AK, Hiesinger H, Robinson MS, Tran T, van der Bogert CH, Wagner RV and the LROC Science Team (2012) Lunar pits: sublunarean voids and the nature of Mare Emplacement. 42nd LPSC. http://www.lpi.usra.edu/meetings/lpsc2011/pdf/2771.pdf

  • Brack A, Baglioni P, Borruat G, Brandstätter F, Demets R, Edwards HGM, Genge M, Kurat G, Miller MF, Newton EM, Pillinger CT, Roten C-A, Wäsch E (2002) Do meteoroids of sedimentary origin survive terrestrial atmospheric entry? The ESA artificial meteorite experiment STONE. Planet Space Sci 50:763–772

    Article  CAS  Google Scholar 

  • Brändström U (2003) The auroral large imaging system—design, operation, and scientific results. PhD Thesis, IRF Sci. Rep. 279, Swedish Institute of Space Physics, Kiruna

    Google Scholar 

  • Brasier MD, Antcliffe J, Saunders M, Wacey D (2015) Changing the picture of Earth’s earliest fossils (3.5-1.9 Ga) with new approaches and new discoveries. Proc Natl Acad Sci U S A 112:4859–4864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briggs MH (1963) Biological problems of meteorites. Tuatara J Biol Soc (Wellington, New Zeeland) 11: 2–16. http://nzetc.victoria.ac.nz/tm/scholarly/tei-Bio11Tuat01-t1-body-d1.html

  • Buchner E, Schmieder M, Gero K, Brandstätter F, Kramar U, Ntaflos T, Kröchert J (2012) Buddha from space – an ancient object of art made of a Chinga iron meteorite fragment. Meteorit Planet Sci 47:1491–1501

    Article  CAS  Google Scholar 

  • Caleb I, Fassett CI, Minton DA (2013) Impact bombardment of the terrestrial planets and the early history of the Solar System. Nat Geosci 6:520–524

    Article  CAS  Google Scholar 

  • Callahan MP, Smith KE, Cleaves HJ, Ruzica J, Stern JC, Glavi DP, House CH, Dworkin JP (2011) Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc Natl Acad Sci U S A 108:13995–13998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon KM, Mustard JF, Agee CB (2015) Evidence for a widespread basaltic breccia component in the Martian low-albedo regions from the reflectance spectrum of northwest Africa 7034. Icarus 252:150–153

    Article  Google Scholar 

  • Cano RJ, Borucki MK (1995) Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science 268:1060–1064

    Article  CAS  PubMed  Google Scholar 

  • Canup R, Asphaug E (2001) Origin of the Moon in a giant impact near the end of Earth’s formation. Nature 412:708–712

    Article  CAS  PubMed  Google Scholar 

  • Cassidy WA (2003) Meteorites, ice and Antarctica. Cambridge University Press, Cambridge, p. 364

    Book  Google Scholar 

  • Ceplecha Z, Borovička J, Graham EW, Revelle DO, Hawkes RL, Porubčan V, Šimek M (1998) Meteor phenomena and bodies. Space Sci Rev 84:327–471

    Article  CAS  Google Scholar 

  • Chladni EFF (1794) Über den Ursprung der von Pallas gefundenen und anderer ihr ähnlicher Eisenmassen und über einige damit in Verbindung stehende Naturerscheinungen [On the origin of the iron masses found by Pallas and others similar to it, and on some natural phenomena associated with them]. Johann Friedrich Hartknoch, Riga

    Google Scholar 

  • Chung L (1976) Studies on the iron blade of a Shang dynasty bronze axe unearthed at Kao-ch’ng. Acta Archaeologia Sinica 2:17–34

    Google Scholar 

  • Cockell CS, Lee P (2002) The biology of impact craters – a review. Biol Rev Camb Philos Soc 77:279–310

    Article  PubMed  Google Scholar 

  • Cockell CS (2008) The interplanetary exchange of photosynthesis. Orig Life Evol Biosph 38:87–104

    Article  PubMed  Google Scholar 

  • Cockell CS (2010) Geomicrobiology beyond Earth: microbe-mineral interactions in space exploration and settlement. Trends Microbiol 18:308–314

    Article  CAS  PubMed  Google Scholar 

  • Cockell CS (2015) Astrobiology – understanding life in the universe. John Wiley & Sons Ltd UK, Chichester

    Google Scholar 

  • Cockell CS (2016) The similarity of life across the universe. Mol Biol Cell 15:1553–1555

    Article  CAS  Google Scholar 

  • Cockell CS, Lee P, Osinski G, Horneck G, Broady P (2002) Impact-induced microbial endolithic habitats. Meteorit Planet Sci 37:1287–1298

    Article  CAS  Google Scholar 

  • Cockell CS, Brack A, Wynn-Williams DD, Baglioni P, Brandstätter F, Demets R, Edwards HG, Gronstal AL, Kurat G, Lee P, Osinski GR, Pearce DA, Pillinger JM, Roten CA, Sancisi-Frey S (2007) Interplanetary transfer of photosynthesis: an experimental demonstration of a selective dispersal filter in planetary island biogeography. Astrobiology 7:1–9

    Article  CAS  PubMed  Google Scholar 

  • Cockell CS, Rettberg P, Rabbow E, Olsson-Francis K (2011) Exposure of phototrophs to 548 days in low Earth orbit: microbial selection pressures in outer space and on early earth. ISME J 5:1671–1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cockell CS, Voytek MA, Gronstal AL, Finster K, Kirshtein JD, Howard K, Reitner J, Gohn GS, Sanford WE, Horton JW Jr, Kallmeyer J, Kelly L, Powars DS (2012) Impact disruption and recovery of the deep subsurface biosphere. Astrobiology 12:231–246

    Article  CAS  PubMed  Google Scholar 

  • Comelli D, D’orazio M, Folco ML, El-Halwagy M, Frizzi T, Alberti R, Capogrosso V, Elnaggar A, Hassan H, Nevin A, Porcelli F, Rashed MG, Valentini G (2016) The meteoritic origin of Tutankhamun’s iron dagger blade. Meteorit Planet Sci 51:1301–1309

    Article  CAS  Google Scholar 

  • Cousins CR, Cockell CS (2015) The geobiology in space exploration. Topical team. An ESA roadmap for geobiology in space exploration. Acta Astronaut 118:286–295

    Article  CAS  Google Scholar 

  • Davis AM (2011) Stardust in meteorites. Proc Natl Acad Sci U S A 108:19142–19146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deguchi S, Shimoshige H, Tsudome M, Mukai S, Corkery RW, Ito S, Horikoshi K (2011) Microbial growth at hyperaccelerations up to 403,627× g. Proc Natl Acad Sci U S A 108:7997–8002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLeon-Rodriguez N, Lathem TL, Rodriguez-R LM, Barazesh JM, Anderson BE, Beyersdorf AJ, Ziemba LD, Bergin M, Nenes A, Konstantinidis KT (2012) Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications. Proc Natl Acad Sci U S A 110:2575–2580

    Article  Google Scholar 

  • De Vera JP, Horneck G, Rettberg P, Ott S (2003) The potential of the lichen symbiosis to cope with extreme conditions of outer space – I. Influence of UV radiation and space vacuum on the vitality of lichen symbiosis germination capacity. Int J Astrobiol 1:285–293

    Article  Google Scholar 

  • De Vera JP et al (2012) Supporting Mars exploration: BIOMEX in low Earth orbit and further astrobiological studies on the Moon using Raman and PanCam technology. Planet Space Sci 74:103–110

    Google Scholar 

  • Dick SJ (2003) Cultural evolution, the postbiological universe and SETI. Int J Astrobiol 2:65–74

    Article  Google Scholar 

  • Edwards HGM, Villar SEJ, Pullan D, Hargreaves MD, Hofmann BA, Westall F (2007) Morphological biosignatures from relict fossilised sedimentary geological specimens: a Raman spectroscopic study. J Raman Spectroscopy 38:1352–1361

    Article  CAS  Google Scholar 

  • Edwards HGM, Moody CD, Jorge-Villar SE, Wynn-Williams DD (2005) Raman spectroscopic detection of key biomarkers of cyanobacteria and lichen symbiosis in extreme Antarctic habitats: evaluation for Mars Lander missions. Icarus 174:560–571

    Article  Google Scholar 

  • Ehrenfreund P, Cami J (2010) Cosmic carbon chemistry: from the interstellar medium to the early Earth. In: Deamer D, Szostak JW (eds) The origins of life. Cold Spring Harbor Press. pp. 318. http://cshperspectives.cshlp.org/content/2/3/a002105.short

  • Evatt GW, Coughlan MJ, Joy KH, Smedley AR, Connolly PJ, Abrahams ID (2016) A potential hidden layer of meteorites below the ice surface of Antarctica. Nat Commun 16:10679

    Article  CAS  Google Scholar 

  • Fairén AG, Dohm JM, Baker VR, Thompson SD, Mahaney WC, Herkenhoff KE, Rodríguez JAP, Davila AF, Schulze-Makuch D, El Maarry MR, Uceda ER, Amils R, Miyamoto H, Kim KJ, Anderson RC, McKay CP (2011) Meteorites at Meridiani Planum provide evidence for significant amounts of surface and near-surface water on early Mars. Meteorit Planet Sci 46:1832–1841

    Article  CAS  Google Scholar 

  • Fajardo-Cavazos P, Lindsey L, Melosh HJ, Nicholson WL (2005) Bacillus subtilis spores on artificial meteorites survive hypervelocity atmospheric entry: implications for lithopanspermia. Astrobiology 5:726–736

    Article  CAS  PubMed  Google Scholar 

  • Fassett CI, Minton DA (2013) Impact bombardment of the terrestrial planets and the early history of the solar system. Nat Geosci 6:520–524

    Article  CAS  Google Scholar 

  • Fernandes VA, Fritz J, Weiss B, Garrick-Bethel I, Shuster D (2013) The bombardment history of the Moon as recorded by 40Ar–39Ar chronology. Meteorit Planet Sci 48:241–269

    Article  CAS  Google Scholar 

  • Forterre P, Filée J, Myllykallio H (2004) Origin and evolution of DNA and DNA replication machineries. In: Ribas de Pouplana L (ed) The genetic code and the origin of life. pp. 145–168. http://www.ncbi.nlm.nih.gov/books/NBK6360/

  • Forterre P, Gribaldo S (2007) The origin of modern terrestrial life. HFSP J 1:156–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fries M, Harvey R, Wainwright N, Jull AJT, Steele A (2010) Microbial contamination study of Antarctic meteorites: as-found, post-curation, and long-term storage. 73rd Annual Meteoritical Society Meeting. Meteorit Planet Sci 73:5363. http://www.lpi.usra.edu/meetings/metsoc2010/pdf/5363.pdf

  • Fries M, Harvey R, Jull AJT, Steele A, Wainright N, and the ANSMET 0708 Team (2012) The microbial contamination state of as found on Antarctic meteorites. Conference proceeding. http://www.lpi.usra.edu/meetings/lifedetection2012/pdf/6036.pdf

  • Fries M, Le Corre L, Hankey M, Fries J, Matson R, Schaefer R, Reddy V (2014) Detection and rapid recovery of the Sutter’s Mill meteorite fall as a model for future recoveries worldwide. Meteorit Planet Sci 49:1989–1996

    Article  CAS  Google Scholar 

  • Fritz J, Artemieva NA, Greshake A (2005) Ejection of Martian meteorites. Meteorit Planet Sci 40:1393–1411

    Google Scholar 

  • Fritz J, Bitsch B, Kührt E, Morbidelli A, Tornow C, Wünnemann K, Fernandes VA, Grenfell JL, Rauer H, Wagner R, Werner SC (2014) Earth-like habitats in planetary systems. Planet Space Sci 98:254–267

    Article  Google Scholar 

  • Garber SJ (1999) Searching for good science: the cancellation of NASA’s SETI program. J Br Interplanet Soc 52:3–12

    Google Scholar 

  • García-Ruiz JM, Carnerup A, Christy AG, Nicholas JW, Hyde ST (2002) Morphology: an ambiguous indicator of biogenicity. Astrobiology 2:353–369

    Article  PubMed  Google Scholar 

  • García-Ruiz JM, Hyde ST, Carnerup AM, Christy AG, Van Kranendonk MJ, Welham NJ (2003) Self-assembled silica-carbonate structures and detection of ancient microfossils. Science 302:1194–1197

    Article  PubMed  CAS  Google Scholar 

  • Geraci G, del Gaudio R, D’Argenio B (2001) Microbes in rocks and meteorites: a new form of life unaffected by time, temperature, pressure. Rendiconti Lincei 12:51–68

    Article  Google Scholar 

  • Gillet P, Barrat JA, Heulin T, Achouak W, Lesourd M, Guyot F, Benzerara K (2000) Bacteria in the Tatahouine meteorite: nanometric-scale life in rocks. Earth Planet Sci Lett 175:161–167

    Article  CAS  PubMed  Google Scholar 

  • Golden DC (2001) A simple inorganic process for formation of carbonates, magnetite, and sulfides in Martian meteorite ALH84001. Am Min 86:370–375

    Article  Google Scholar 

  • González-Toril E, Martínez-Frías J, Gómez Gómez JM, Rull F, Amils R (2005) Iron meteorites can support the growth of acidophilic chemolithoautotrophic microorganism. Astrobiology 5:406–414

    Article  PubMed  Google Scholar 

  • Gronstal A, Pearson V, Kappler A, Dooris C, Anand M, Poitrasson F, Kee TP, Cockell CS (2009) Laboratory experiments on the weathering of iron meteorites and carbonaceous chondrites by iron-oxidizing bacteria. Meteorit Planet Sci 44:233–247

    Article  CAS  Google Scholar 

  • Griffin DW (2013) The quest for extraterrestrial life: what about the viruses? Astrobiology 13:774–783

    Article  PubMed  Google Scholar 

  • Gull M (2014) Prebiotic phosphorylation reactions on the early Earth. Challenges 5:193–212

    Article  Google Scholar 

  • Hahn O (1880) Die Meteorite (Chondrite) und ihre Organismen. Verlag der H. Laupp’schen Buchhandlung, Tübingen

    Google Scholar 

  • Halliday I (2001) The present-day flux of meteorites to the Earth. In: Peucker-Ehrenbrink B, Schmitz B (eds) Accretion of extraterrestrial matter throughout Earth’s history. Springer Publisher, Boston, pp. 305–318

    Chapter  Google Scholar 

  • Hansen ES, Graff-Petersen P (1986) Lichens growing on the Ella Island meteorite, Central East Greenland. Lichenologist 18:71–78

    Article  Google Scholar 

  • Harries P, Hoppe P, Langenhorst F (2015) Reactive ammonia in the solar protoplanetary disk and the origin of Earth’s nitrogen. Nat Geosci Lett 8:97–101

    Article  CAS  Google Scholar 

  • Hofmann BA, Nyström JO, Krähenbühl U (2000) The Ordovician chondrite from Brunflo, central Sweden III. Geochemistry of terrestrial alteration. Lithos 50:305–324

    Article  CAS  Google Scholar 

  • Hofmann BA, Gnos E, Al-Kathiri A (2004) Harvesting meteorites in the Omani desert: Implications for Astrobiology. Proc. III Eur. Workshop on Exo-Astrobiology, Madrid, 18–20 Nov 2003. ESA SP-545, March 2004, pp. 73–76

    Google Scholar 

  • Hofmann BA, Farmer JD, von Blanckenburg F, Fallick AE (2008) Subsurface filamentous fabrics: an evaluation of origins based on morphological and geochemical criteria, with implications for exopaleontology. Astrobiology 8:87–117

    Article  CAS  PubMed  Google Scholar 

  • Hofmann BA (2010) Meteorites: messengers from the early solar system. Chimia (Aarau) 64:736–740

    Article  CAS  Google Scholar 

  • Horneck G, Rettberg P, Reitz G, Wehner J, Eschweiler U, Strauch K, Panitz C, Starke V, Baumstark-Khan C (2001) Protection of bacterial spores in space, a contribution to the discussion on panspermia. Orig Life Evol Biosph 31:527–547

    Article  CAS  PubMed  Google Scholar 

  • Horneck G, Stöffler D, Ott S, Hornemann U, Cockell CS, Moeller R, Meyer C, de Vera JP, Fritz J, Schade S, Artemieva NA (2008) Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested. Astrobiology 8:17–44

    Article  CAS  PubMed  Google Scholar 

  • Horneck G, Walter N, Westall F, Grenfell JL, Martin WF, Gomez F, Leuko S, Lee N, Onofri S, Tsiganis K, Saladino R, Pilat-Lohinger E, Palomba E, Harrison J, Rull F, Muller C, Strazzulla G, Brucato JR, Rettberg P, Capria MT (2016) AstRoMap European Astrobiology Roadmap. Astrobiology 16:201–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoyle F, Wickramasinghe C, Watkins J (1986) Viruses from space. Univ Coll Cardiff Press, Cardiff, p. 128

    Google Scholar 

  • Humayun M, Nemchin A, Zanda B, Hewins RH, Grange M, Kennedy A, Lorand JP, Göpel C, Fieni C, Pont S, Deldicque D (2013) Origin and age of the earliest Martian crust from meteorite NWA 7533. Nature 503:513–516

    Article  CAS  PubMed  Google Scholar 

  • Jalasvuori M, Bamford JK (2009) Did the ancient crenarchaeal viruses from the dawn of life survive exceptionally well the eons of meteorite bombardment? Astrobiology 9:131–137

    Article  PubMed  Google Scholar 

  • Jalasvuori M (2012) Revolutionary struggle for existence: Introduction to four intriguing puzzles in virus research. In: Witzany G (ed) Viruses: essential agents of life. Springer Publisher, Dordrecht, pp. 1–19. doi:10.1007/978-94-007-4899-6

    Chapter  Google Scholar 

  • Jenniskens P, Fries MD, Yin QZ, Zolensky M, Krot AN, Sandford SA, Sears D, Beauford R, Ebel DS, Friedrich JM, Nagashima K, Wimpenny J, Yamakawa A, Nishiizumi K, Hamajima Y, Caffee MW, Welten KC, Laubenstein M, Davis AM, Simon SB, Heck PR, Young ED, Kohl IE, Thiemens MH, Nunn MH, Mikouchi T, Hagiya K, Ohsumi K, Cahill TA, Lawton JA, Barnes D, Steele A, Rochette P, Verosub KL, Gattacceca J, Cooper G, Glavin DP, Burton AS, Dworkin JP, Elsila JE, Pizzarello S, Ogliore R, Schmitt-Kopplin P, Harir M, Hertkorn N, Verchovsky A, Grady M, Nagao K, Okazaki R, Takechi H, Hiroi T, Smith K, Silber EA, Brown PG, Albers J, Klotz D, Hankey M, Matson R, Fries JA, Walker RJ, Puchtel I, Lee CT, Erdman ME, Eppich GR, Roeske S, Gabelica Z, Lerche M, Nuevo M, Girten B, Worden SP; Sutter’s Mill Meteorite Consortium (2012) Radar-enabled recovery of the Sutter’s Mill meteorite, a carbonaceous chondrite regolith breccia. Science 338:1583–1587

    Google Scholar 

  • Johnson D, Tyldesley J, Lowe T, Withers PJ, Grady MM (2013) Analysis of a prehistoric Egyptian iron bead with implications for the use and perception of meteorite iron in ancient Egypt. Meteorit Planet Sci 48:997–1006

    Article  CAS  Google Scholar 

  • Joseph RG (2016) Was life discovered on the moon? The truth about the moon microbes. http://cosmology.com/MoonLife1.html

  • Jørgensen JK, Favre C, Bisschop S, Bourke T, Dishoeck E, Schmalzl M (2012) Detection of the simplest sugar, glycolaldehyde, in a solar-type protostar with ALMA. Astrophys J Lett 757:1–6

    Article  CAS  Google Scholar 

  • Jull AJT, Courtney C, Jeffrey DA, Beck JW (1998) Isotopic evidence for a terrestrial source of organic compounds found in the martian meteorites ALH 84001 and EETA79001. Science 279:365–369

    Article  Google Scholar 

  • Jull AJT (2001) Terrestrial age of meteorites. In: Peucker-Ehrenbrink B, Schmitz B (eds) Accretion of extraterrestrial matter throughout Earth’s history. Springer Publisher, Boston, pp. 241–266

    Chapter  Google Scholar 

  • Jull AJT (2006) Terrestrial ages of meteorites. In: Lauretta DS, McSween HY (eds) Meteorites and the early solar system II. University of Arizona Press, Tucson, pp. 889–905. http://www.lpi.usra.edu/books/MESSII/9011.pdf

  • Kleine T (2011) Geoscience: earth’s patchy late veneer. Nature 477:168–169

    Article  CAS  PubMed  Google Scholar 

  • Krot AN, Yurimoto H, Hutcheon ID, MacPherson GJ (2005) Chronology of the early Solar System from chondrule-bearing calcium-aluminium-rich inclusions. Nature 434:998–1001

    Article  CAS  PubMed  Google Scholar 

  • Kutlucinar K, Kleiner F, Zebec Z, Rittmann S, Schleper C, Kutlucinar K, Ferrière L, .Milojevic T (2015) Acquiring the microbial-mineral interface of Metallosphaera sedula grown on stony meteorite. 15th EANA (European Astrobiology Network Association) Workshop, 6–9 Oct 2015, ESTEC Noordwijk, Netherlands

    Google Scholar 

  • Lapen TJ, Righter M, Brandon AD, Debaille V, Beard BL, Shafer JT, Peslier AH (2010) A younger age for ALH84001 and its geochemical link to shergottite sources in Mars. Science 328:347–351

    Article  CAS  PubMed  Google Scholar 

  • Le Romancer M, Gaillard M, Geslin C, Prieur D (2007) Viruses in extreme environments. Rev Environ Sci Biotechnol 6:17–31

    Article  CAS  Google Scholar 

  • Lee MR, Bland PA (2004) Mechanisms of weathering of meteorites recovered from hot and cold deserts and the formation of phyllosilicates. Geochim Cosmochim Acta 68:893–916

    Article  CAS  Google Scholar 

  • Lee NM, Ganzenko O, Beck A, Gnosq E, Zurfluh FJ, Hofmann BA (2012) Meteorites as habitats for lichens and microorganisms in hot deserts. Abstr P5.01, 12th EANA (European Astrobiology Network Association) Workshop, 15–17 Oct 2012, Stockholm

    Google Scholar 

  • Lind MD, Housley RM (1972) Crystallization studies of lunar igneous rocks: crystal structure of synthetic armalcolite. Science 175:521–523

    Article  CAS  PubMed  Google Scholar 

  • Lindsay JF, McKay DS, Allen CC (2003) Earth’s earliest biosphere— a proposal to develop a collection of curated Archean geologic reference materials. Astrobiology 3:739–758

    Article  PubMed  Google Scholar 

  • Locey KJ, Lennon JT (2016) Scaling laws predict global microbial diversity. Proc Natl Acad Sci U S A 113:5970–5975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahy B, van Regenmortel M (2009) Desk encyclopedia of general virology. Academic Press, Oxford, p. 672

    Google Scholar 

  • Maier WD, Andreoli MAG, McDonald I, Higgins MD, Boyce AJ, Shukolyukov A, Lugmair GW, Ashwal LD, Graser P, Ripley EM, Hart RJ (2006) Discovery of a 25-cm asteroid clast in the giant Morokweng impact crater, South Africa. Nature 441:203–206

    Article  CAS  PubMed  Google Scholar 

  • Martin D, Arcones A, Nazarewicz W, Olsen E (2016) Impact of nuclear mass uncertainties on the r process. Phys Rev Lett 116:121101

    Article  CAS  PubMed  Google Scholar 

  • Marvin UB (1983) The discovery and initial characterization of Allan Hills 81005: the first lunar meteorite. Geophys Res Lett 10:775–778

    Article  CAS  Google Scholar 

  • Mastrapa R, Glanzberg H, Head J, Melosh H, Nicholson W (2001) Survival of bacteria exposed to extreme acceleration: implications for panspermia. Earth Planet Sci Lett 189:1–8

    Article  CAS  Google Scholar 

  • Mautner MN, Leonard RL, Deamer DW (1995) Meteorite organics in planetary environments: hydrothermal release, surface activity, and microbial utilization. Planet Space Sci 43:139–147

    Article  CAS  PubMed  Google Scholar 

  • Mautner MN, Conner AJ, Killham K, Deamer DW (1997) Biological potential of extraterrestrial materials. 2. Microbial and plant responses to nutrients in the Murchison carbonaceous meteorite. Icarus 129:245–253

    Article  CAS  PubMed  Google Scholar 

  • Mautner MN (2002a) Planetary resources and astroecology. Planetary microcosm models of asteroid and meteorite interiors: electrolyte solutions and microbial growth – implications for space populations and panspermia. Astrobiology 2:59–76

    Article  CAS  PubMed  Google Scholar 

  • Mautner MN (2002b) Planetary bioresources and astroecology: 1. Planetary microcosm bioassays of Martian and carbonaceous chondrite materials: nutrients, electrolyte solutions, and algal and plant responses. Icarus 158:72–86

    Article  CAS  Google Scholar 

  • McCall GJH, Bowden AJ, Howarth RJ (eds) (2006) The history of meteoritics and key meteorite collections: fireballs, falls and finds, Geological Society Special Publication no, vol 256. Geological Society, London

    Google Scholar 

  • McKay DS, Gibson EK, Thomas-Keprta KL, Vali H, Romanek CS, Clemett SJ, Chillier XDF, Maechling CR, Zare R (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273:924–930

    Article  CAS  PubMed  Google Scholar 

  • Mc Kinney ML (1997) How do rare species avoid extinction? A paleontological view. In: Kunin WE, Gaston KJ (eds) The biology of rarity: causes and consequences of rare – common differences. Springer Science & Business Media B.V. Chapman & Hall, London, pp. 110–129

    Google Scholar 

  • McLoughlin N, Brasier MD, Wacey D, Green OR, Perry RS (2007) On biogenicity criteria for endolithic microborings on early Earth and beyond. Astrobiology 7:10–26

    Article  CAS  PubMed  Google Scholar 

  • McLoughlin N, Grosch EG (2016) A hierarchical system for evaluating the biogenicity of metavolcanic- and ultramafic-hosted microalteration textures in the search for extraterrestrial life. Astrobiology 15:901–921

    Article  Google Scholar 

  • Meibom A, Clark BE (1999) Invited review: Evidence for the insignificance of ordinary chondritic material in the asteroid belt. Meteorit Planet Sci 34:7–24

    Article  CAS  Google Scholar 

  • Meyer C, Fritz J, Misgaiski M, Stöffler D, Artemieva NA, Hornemann U, Moeller R, De Vera J-P, Cockell C, Horneck G, Ott S, Rabbow E (2011) Shock experiments in support of the Lithopanspermia theory: the influence of host rock composition, temperature, and shock pressure on the survival rate of endolithic and epilithic microorganisms. Meteorit Planet Sci 46:701–718

    Article  CAS  Google Scholar 

  • Mignan A (2011) Claims of indigenous life forms in meteorites: a short review. Aust Met Mag 17:34–38

    Google Scholar 

  • Miller SL (1953) Production of amino acids under possible primitive earth conditions. Science 117:528–529

    Article  CAS  PubMed  Google Scholar 

  • Mittlefehldt DW (1994) ALH84001, a cumulate orthopyroxenite member of the SNC meteorite group. Meteoritics 29:214–221

    Article  CAS  Google Scholar 

  • Moissl-Eichinger C, Cockell C, Rettberg P (2016) Venturing into new realms? Microorganisms in space. FEMS Microbiol Rev 40:722–737 pii: fuw015

    Article  PubMed  Google Scholar 

  • Narlikar JV, Lloyd D, Wickramasinghe NC, Harris MJ, Turner MP, Al-Mufti S, Wallis MK, Wainwright M, Rajaratnam P, Shivaji S, Reddy GSN, Ramadurai S, Hoyle F (2003) A balloon experiment to detect microorganisms in the outer space. Astrophys Space Sci 285:555–562

    Article  Google Scholar 

  • Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson WL (2009) Ancient micronauts: interplanetary transport of microbes by cosmic impacts. Trends Microbiol 17:243–250

    Article  CAS  PubMed  Google Scholar 

  • Nininger HH (1972) Find a falling star. Paul S Eriksson Inc, New York, 254 pp

    Google Scholar 

  • Nittler LR, McCoy TJ, Clark PE, Murphy ME, Trombka JI, Jarosewich E (2004) Bulk element compositions of meteorites: a guide for interpreting remote-sensing geochemical measurements of planets and asteroids. Antarct Meteorite Res 17:233–253

    Google Scholar 

  • Nixon SL, Cockell CS (2015) Nonproteinogenic D-amino acids at millimolar concentrations are a toxin for anaerobic microorganisms relevant to early Earth and other anoxic planets. Astrobiology 15:238–246

    Article  CAS  PubMed  Google Scholar 

  • Norton OR (2002) The Cambridge encyclopedia of meteorites. Cambridge University Press, Cambridge, p. 354

    Google Scholar 

  • Nuevo M, Auger G, Blanot D, d’Hendecourt L (2008) A detailed study of the amino acids produced from the vacuum UV irradiation of interstellar ice analogs. Orig Life Evol Biosph 38:37–56

    Article  CAS  PubMed  Google Scholar 

  • Olsson-Francis K, Cockell CS (2010) Experimental methods for studying microbial survival in extraterrestrial environments. J Microbiol Methods 80:1–13

    Article  CAS  PubMed  Google Scholar 

  • Oró J, Tornabene T (1965) Bacterial contamination of some carbonaceous meteorites. Science 150:1046–1048

    Article  PubMed  Google Scholar 

  • Pache M, Reitner J, Arp G (2001) Geochemical evidence for the formation of a large Miocene “travertine” mound at a sublacustrine spring in a soda lake; Wallerstein castle rock, Nördlinger Ries, Germany. Facies 45:211–230

    Article  Google Scholar 

  • Pacton M, Wacey D, Corinaldesi C, Tangherlini M, Kilburn MR, Gorin GE, Danovaro R, Vasconcelos C (2014) Viruses as new agents of organomineralization in the geological record. Nat Commun 5:4298. doi:10.1038/ncomms5298

    Article  CAS  PubMed  Google Scholar 

  • Pasek M, Lauretta D (2008) Extraterrestrial flux of potentially prebiotic C, N, and P to the early Earth. Orig Life Evol Biosph 38:5–21

    Article  CAS  PubMed  Google Scholar 

  • Paul D, Kumbhare SV, Mhatre SS, Chowdhury SP, Shetty SA, Marathe NP, Bhute S, Shouche YS (2016) Exploration of microbial diversity and community structure of Lonar Lake: the only hypersaline meteorite crater lake within basalt rock. Front Microbiol 6:1553. doi:10.3389/fmicb.2015.01553

    Article  PubMed  PubMed Central  Google Scholar 

  • Pellinen-Wannberg A, Murad E, Gustavsson B, Brändström U, Enell CF, Roth C, Williams IP, Steen Å (2004) Optical observations of water in Leonid meteor trails. Geophys Res Lett 31:L03812. doi: 10.1029/2003/GL018785,2004

  • Pellinen-Wannberg A, Kero J, Häggström J, Mann I, Tjulin A (2016) The forthcoming EISCAT_3D as an extra-terrestrial matter monitor. Planet Space Sci 123:33–40. doi:10.1016/j.pss.2015.10.009,2016

  • Peucker-Ehrenbrink B, Ravizza G, Winckler G (2016) Geochemical tracers of extraterrestrial matter in sediments. Elements 12:191–196

    Article  Google Scholar 

  • Pillinger JM, Pillinger CT, Powell M, Butler M (2011) Application of lichenometry to meteorite studies. 74th Annual Meeting of the Meteoritical Society, Abstract 5277, London

    Google Scholar 

  • Pizzarello S, Shock E (2010) The organic composition of carbonaceous meteorites: The evolutionary story ahead of biochemistry. In: Deamer D, Szostak JW (eds). The origins of life. Cold Spring Harbor Press, pp. 318. http://cshperspectives.cshlp.org/content/2/3/a002105.short

  • Pizzarello S (2016) Molecular asymmetry in prebiotic chemistry: An account from meteorites. Life 6:E18. doi:10.3390/life6020018

    Article  PubMed  Google Scholar 

  • Plait P 2013 Blogs from January 2013. http://www.slate.com/blogs/bad_astronomy/2013/03/11/meteorite_life_claims_of_fossils_in_a_meteorite_are_still_wrong.html, http://www.slate.com/blogs/bad_astronomy/2013/01/15/life_in_a_meteorite_claims_by_n_c_wickramasinghe_of_diatoms_in_a_meteorite.html

  • Prangishvili D (2013) The wonderful world of archaeal viruses. Annu Rev Microbiol 67:565–585

    Article  CAS  PubMed  Google Scholar 

  • Prangishvili D (2015) Archaeal viruses: living fossils of the ancient virosphere? Ann N Y Acad Sci 1341:35–40

    Article  CAS  PubMed  Google Scholar 

  • Pullan D, Westall F, Hofmann BA, Parnell J, Cockell CS, Edwards HG, Villar SE, Schröder C, Cressey G, Marinangeli L, Richter L, Klingelhöfer G (2008) Identification of morphological biosignatures in Martian analogue field specimens using in situ planetary instrumentation. Astrobiology 8:119–156

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen R (2000) Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature 405:676–679

    Article  CAS  PubMed  Google Scholar 

  • Rea G, Cristofaro F, Pani G, Pascucci B, Ghuge SA, Corsetto PA, Imbriani M, Visai L, Rizzo AM (2016) Microgravity-driven remodeling of the proteome reveals insights into molecular mechanisms and signal networks involved in response to the space flight environment. J Proteomics 137:3–18

    Article  CAS  PubMed  Google Scholar 

  • Reed C (2015) Earth microbe prefers living on meteorites. Science. doi:10.1126/science.aab2499

    Google Scholar 

  • Rehren T, Belgya T, Jambonc A, György K, Zsolt K, Kis Z, Kovácse I, Boglárka M, Martinón-Torres M, Miniacif G, Pigott VC, Radivojević M, Rosta L, Szentmiklósi L, Szőkefalvi-Nagye Z (2013) 5,000 years old Egyptian iron beads made from hammered meteoritic iron. J Archaeol Sci 40:4785–4792

    Article  CAS  Google Scholar 

  • Rettberg P, Anesio AM, Baker VR, Baross JA, Cady SL, Detsis E, Foreman CM, Hauber E, Ori GG, Pearce DA, Renno NO, Ruvkun G, Sattler B, Saunders MP, Smith DH, Wagner D, Westall F (2016) Planetary protection and Mars special regions – a suggestion for updating the definition. Astrobiology 16:119–125

    Article  PubMed  Google Scholar 

  • Riding R (1999) The term stromatolite: towards an essential definition. Lethaia 32:321–330

    Article  Google Scholar 

  • Roossinck M (2011) The good viruses: viral mutualistic symbioses. Nat Rev Microbiol 9:99–108

    Article  CAS  PubMed  Google Scholar 

  • Rosing MT (1999) 13C-depleted carbon in >3700 Ma seafloor sedimentary rocks from West Greenland. Science 283:674–676

    Article  CAS  PubMed  Google Scholar 

  • Roy SK (1935) The question of living bacteria in stony meteorites. Geol Ser Field Museum Nat Hist 6:180–198

    Google Scholar 

  • Rubin AE, Grossman JN (2010) Meteorite and meteoroid: new comprehensive definitions. Meteorit Planet Sci 45:114–122

    Article  CAS  Google Scholar 

  • Saladino R, Carota E, Botta G, Kapralov M, Timoshenko GN, Rozanov AY, Krasavin E, Di Mauro E (2015) Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation. Proc Natl Acad Sci U S A 112:E2746–E2755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sancho LG, de la Torre R, Pintado A (2008) Lichens, new and promising material from experiments in astrobiology. Fungal Biol Rev 22:103–109

    Article  Google Scholar 

  • Sandford SA, Bera PP, Lee TJ, Materese CK, Nuevo M (2015) Photosynthesis and photo-stability of nucleic acids in prebiotic extraterrestrial environments. Top Curr Chem 356:123–164

    Article  CAS  PubMed  Google Scholar 

  • Schmitt-Kopplin P, Gabelica Z, Gougeon RD, Fekete A, Kanawati B, Harir M, Gebefuegi I, Eckel G, Hertkorn N (2010) High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc Natl Acad Sci U S A 107:2763–2768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz B, Tassinari M (2001) Fossil Meteorites. In: Peucker-Ehrenbrink B, Schmitz B (eds) Accretion of extraterrestrial matter throughout Earth’s history. Springer Publisher, Boston, pp. 319–331

    Chapter  Google Scholar 

  • Schmitz B (2013) Extraterrestrial spinels and the astronomical perspective on Earth’s geological record and evolution of life. Chemie der Erde 73:117–145

    Article  CAS  Google Scholar 

  • Schmitz B, Huss GR, Meier MMM, Peucker-Ehrenbrink B, Church RP, Cronholm A, Davies MB, Heck PR, Johansen A, Keil K, Kristiansson P, Ravizza G, Tassinari M, Terfelt F (2014) A fossil winonaite-like meteorite in Ordovician limestone: a piece of the impactor that broke up the L-chondrite parent body? Earth Planet Sci Lett 400:145–152

    Article  CAS  Google Scholar 

  • Schröder C, Rodionov DS, McCoy TJ, Jolliff BL, Gellert R, Nittler LR, Farrand WH, Johnson JR, Ruff SW, Ashley JW, Mittlefehldt DW, Herkenhoff KE, Fleischer I, Haldemann AFC, Klingelhöfer G, Ming DW, Morris RV, de Souza PA, Squyres SW, Weitz C, Yen AS, Zipfel J, Economou T (2008) Meteorites on Mars observed with the Mars exploration rovers. J Geophys Res Planets 113(E6):E06S22 2156–2202

    Article  CAS  Google Scholar 

  • Shapiro R, Schulze-Makuch D (2009) The search for alien life in our solar system: strategies and priorities. Astrobiology 9:335–343

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Buick R, Canfield DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archean era. Nature 410:77–81

    Article  CAS  PubMed  Google Scholar 

  • Shivaji S, Chaturvedi P, Begum Z, Pindi PK, Manorama R, Padmanaban DA, Shouche YS, Pawar S, Vaishampayan P, Dutt CB, Datta GN, Manchanda RK, Rao UR, Bhargava PM, Narlikar JV (2009) Janibacter hoylei sp. nov., Bacillus isronensis sp. nov. and Bacillus aryabhattai sp. nov., isolated from cryotubes used for collecting air from the upper atmosphere. Int J Syst Evol Microbiol 59:2977–2986

    Article  CAS  PubMed  Google Scholar 

  • Slobodkin A, Gavrilov S, Ionov V, Iliyin V (2015) Spore-forming thermophilic bacterium within artificial meteorite survives entry into the Earth’s atmosphere on FOTON-M4 satellite landing module. PLoS One 10:e0132611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith DJ (2013) Microbes in the upper atmosphere and unique opportunities for astrobiology research. Astrobiology 13:981–990

    Article  PubMed  Google Scholar 

  • Smith IWM, Cockell CS, Leach S (eds) (2013) Astrochemistry and astrobiology. Springer Verlag, Berlin/Heidelberg, p. 349

    Google Scholar 

  • Solden L, Lloyd K, Wrighton K (2016) The bright side of microbial dark matter: lessons learned from the uncultivated majority. Curr Opin Microbiol 31:217–226

    Article  PubMed  Google Scholar 

  • Steele A, Goddard DT, Stapleton D, Toporski JK, Peters V, Bassinger V, Sharples G, Wynn-Williams DD, McKay DS (2000) Investigations into an unknown organism on the martian meteorite Allan Hills 84001. Meteorit Planet Sci 35:237–241

    Article  CAS  PubMed  Google Scholar 

  • Steele A, Toporski JKW, McKay DS (2001) The terrestrial contamination of meteorites. An update. Abstr. 64th Annual Meteoritical Society Meeting, 10–14 Sept 2001, Gregorian Pontifical University, Vatican City

    Google Scholar 

  • Steele A, McCubbin FM, Fries M, Kater L, Boctor NZ, Fogel ML, Conrad PG, Glamoclija M, Spencer M, Morrow AL, Hammond MR, Zare RN, Vicenzi EP, Siljeström S, Bowden R, Herd CD, Mysen BO, Shirey SB, Amundsen HE, Treiman AH, Bullock ES, Jull AJ (2012) A reduced organic carbon component in martian basalts. Science 337:212–215. doi:10.1126/science.1220715 Epub 2012 May 24

    Article  CAS  PubMed  Google Scholar 

  • Steele A (2014) What do viruses, viroids and prions reveal about the formation of life on Earth. In: Dating the origin of life: present-day molecules and first fossil record. GAIA inform 7. http://www.geobiologie.uni-goettingen.de/images/pdf/origin%20of%20life_1.pdf

  • Steele A, McCubbin FM, Fries MD (2016) The provenance, formation and implications of reduced carbon phases in Martian meteorites. Meteorit Planet Sci 51:2203–2225 doi: 10.11111/maps.12670

  • Stelzner T, Heide K, Bischoff A, Weber D, Scherer P, Schultz L, Happel M, Schrön W, Neupert U, Michel R, Clayton RN, Mayeda TK, Bonani G, Haidas I, Ivy-Ochs S, Suter M (1999) An interdisciplinary study of weathering effects in ordinary chondrites from the Acfer region, Algeria. Meteorit Planet Sci 34:787–794

    Article  CAS  Google Scholar 

  • Strasdeit H (2005) New studies on the Murchison meteorite shed light on the pre-RNA world. Chembiochem 6:801–803

    Article  CAS  PubMed  Google Scholar 

  • Thomas-Keprta KL, Clemett SJ, Bazylinski DA, Kirschvink JL, McKay DS, Wentworth SJ, Vali H, Gibson Jr EK Jr, Romanek CS (2002) Magnetofossils from ancient Mars: a robust biosignature in the martian meteorite ALH84001. Appl Environ Microbiol 68:3663–3672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas-Keprta KL, Clemett SJ, McKay DS, Gibson EK, Wentworth SJ (2009) Origins of magnetite nanocrystals in Martian meteorite ALH84001. Geochim Cosmochim Acta 73:6631–6677

    Article  CAS  Google Scholar 

  • Toporski J, Steele A (2007) Observations from a 4-year contamination study of a sample depth profile through Martian meteorite Nakhla. Astrobiology 7:389–401

    Article  CAS  PubMed  Google Scholar 

  • Treiman AH, Gleason JD, Bogard DD (2000) The SNC meteorites are from Mars. Planet Space Sci 48:1213–1230

    Article  CAS  Google Scholar 

  • Vasanthan T, Alejaldre L, Hider J, Patel S, Husain N, Umapathisivam B, Ston J (2016) G-equivalent acceleration tolerance in the eutardigrade species Hypsibius dujardini. Astrobiology (in review/in press)

    Google Scholar 

  • Veski S, Heinsalu A, Lang V, Kestlane I, Possnert G (2004) The age of the Kaali meteorite craters and the effect of the impact on the environment and man: evidence from inside the Kaali craters, island of Saaremaa, Estonia. Veg Hist Archaeobotany 13:197–206

    Article  Google Scholar 

  • Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:896–900

    Article  Google Scholar 

  • Wacey D, Kilburn MR, Saunders M, Cliff J, Brasier MD (2011) Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat Geosci 4:698–702

    Article  CAS  Google Scholar 

  • Wacey D, McLoughlin N, Kilburn MR, Saunders M, Cliff JB, Kong C, Barley ME, Brasier MD (2013) Nanoscale analysis of pyritized microfossils reveals differential heterotrophic consumption in the ~1.9-Ga Gunflint chert. Proc Natl Acad Sci U S A 110:8020–8024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wacey D, Saunders M, Roberts M, Menon S, Green L, Kong C, Culwick T, Strother P, Brasier MD (2014) Enhanced cellular preservation by clay minerals in 1 billion-year-old lakes. Sci Rep 5841: doi:10.1038/srep05841

    Google Scholar 

  • Wainwright M (2003) A microbiologist looks at panspermia. Astrophys Space Sci 285:563–570

    Article  Google Scholar 

  • Wainwright M, Alharbi S, Wickramasinghe NC (2006) How do microorganisms reach the stratosphere? Int J Astrobiol 5:13–15

    Article  CAS  Google Scholar 

  • Wainwright M, Laswd A, Alshammari F (2009) Bacteria in amber coal and clay in relation to lithopanspermia. Int J Astrobiol 8:141–143

    Article  Google Scholar 

  • Wainwright M, Fawaz Alshammari F, Alabri K (2010) Are microbes currently arriving to Earth from space? J Cosmol 7:1692–1702

    Google Scholar 

  • Wallis J, Miyake N, Hoover RB, Oldroy A, Wallis DH, Samaranayake A, Wickramarathne K, Wallis MK, Gibson CH, Wickramasinghe NC (2013) The Polonnaruwa meteorite: oxygen isotope, crystalline and biological composition. J Cosmol 22:10004–10011

    Google Scholar 

  • Wan N, Abernathy M, Tang JKH, Tang YJ, You L (2015) Cyanobacterial photo-driven mixotrophic metabolism and its advantages for biosynthesis. Front Chem Sci Eng 9:308–316

    Article  CAS  Google Scholar 

  • Wang W, Lang MG, Diehl R, Halloin H, Jean P, Knödlseder J, Kretschmer K, Martin P, Roques JP, Strong AW, Winkler C, Zhang XL (2009) Spectral and intensity variations of Galactic 26Al emission. Astron Astrophys 496:713–724

    Article  CAS  Google Scholar 

  • Weinland DF (1882) Über die in Meteoriten entdeckten Thierreste. Esslingen, Germany

    Google Scholar 

  • Welten KC, Alderliesten C, van der Borg K, Lindner L, Loeken T, Schultz L (1997) Lewis Cliff 86360: an Antarctic L-chondrite with a terrestrial age of 2.35 million years. Meteorit Planet Sci 32:775–780

    Article  CAS  Google Scholar 

  • Wickramasinghe C, Wallis J, Wallis DH, Samaranayake A (2013a) Fossil diatoms in a new carbonaceous meteorite. J Cosmol 21:9560–9571

    Google Scholar 

  • Wickramasinghe C, Wallis J, Miyake N, Oldroyd A, Wallis DH, Samaranayake A, Wickramarathne K, Hoover RB, Wallis MK (2013b) Authenticity of the life-bearing Polonnaruwa meteorite. J Cosmol 21:9772–9777

    Google Scholar 

  • Wickramasinghe C, Vaidya PG, Wainwright M, McLean R, Netea M, Joseph G (2013c) Diseases from space: astrobiology, viruses, microbiology, meteors, comets, evolution. Cosmology Science Publishers. pp. 198. ISBN/10:1938024184

    Google Scholar 

  • Wlotzka F (1993) A weathering scale for the ordinary chondrites. Meteoritics 28:460

    Google Scholar 

  • Worth RJ, Sigurdsson S, Hous CH (2013) Seeding life on the moons of the outer planets via lithopanspermia. Astrobiology 13:1155–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu P, Chen F, Mannas J, Feldman T, Sumner L, Roossinck M (2008) Virus infection improves drought tolerance. New Phytol 180:911–921

    Article  PubMed  Google Scholar 

  • Yang J, Goldstein JI, Scott ERD (2010) Main-group pallasites: thermal history, relationship to IIIAB irons, and origin. Geochim Cosmochim Acta 74:4471–4492

    Article  CAS  Google Scholar 

  • Zhmur SI, Gerasimenko LM (1999) Biomorphic forms in carbonaceous meteorite Allende and possible ecological system – producer of organic matter chondrites. In: Hoover RB (ed) Instruments, methods and missions for astrobiology II, Proc. SPIE 3755, pp 48–58

    Google Scholar 

  • Zhmur SI, Rozanov AY, Gorlenko VM (1997) Lithified remnants of microorganisms in carbonaceous chondrites. Geochem Int 35:58–60

    Google Scholar 

  • Zurfluh FJ, Hofmann BA, Gnos E, Eggenberger U (2013) “Sweating meteorites” – water-soluble salts and temperature variation in ordinary chondrites and soil from the hot desert of Oman. Meteorit Planet Sci 48:1958–1980

    Article  CAS  Google Scholar 

  • Zurfluh FJ, Hofmann BA, Gnos E, Eggenberger U, Jull AJT (2016) Weathering of ordinary chondrites from Oman: correlation of weathering parameters with 14C terrestrial ages and a refined weathering scale. Meteorit Planet Sci 51:1685–1700. doi:10.1111/maps.12690

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natuschka N. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lee, N.N. et al. (2017). The Extreme Biology of Meteorites: Their Role in Understanding the Origin and Distribution of Life on Earth and in the Universe. In: Stan-Lotter, H., Fendrihan, S. (eds) Adaption of Microbial Life to Environmental Extremes. Springer, Cham. https://doi.org/10.1007/978-3-319-48327-6_11

Download citation

Publish with us

Policies and ethics