Skip to main content

Characterization of Closed-Cell Aluminium Foams Subjected to Compressive Loading

  • Chapter
Characterization of Minerals, Metals, and Materials 2015

Abstract

The mechanical response of closed-cell aluminium metallic foams subjected to low and high strain-rate loading has been investigated. A set of quasi-static and dynamic (shock) compressive tests have been conducted on closed-cell aluminium foams (CYMAT) with densities of 0.50 and 0.30 g/cc. Post-mortem characterization via optical microscopy and electron backscatter diffraction (EBSD) was performed on pristine and deformed specimens to elucidate the dominant deformation mechanisms in these materials. The combination of these techniques allowed for the assessment of critical deformation parameters such as changes in cell geometry and morphology, as well as microstructural evolution and deformation of the aluminium cellular network. These findings aim to aid in the design and development of optimized material structures for impact and blast protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 239.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lorna J.Gibson, and Michhael F. Ashby, Cellular solids: structure and properties (Cambridge university press, 1999).

    Google Scholar 

  2. H.P. Degischer, B.E. Kriszt, “Handbook of Cellular Metals: Production, Processing Applications,” Willy-VCH, 2002.

    Book  Google Scholar 

  3. A. Jung, E. Lach, and S. Diebels, “New hybrid foam materials for impact protection”. International Journal of Impact Engineering, 64(2014), 30–38.

    Article  Google Scholar 

  4. R.P. Merrett, G.S. Langdon, and M.D. Theobald, “The blast and impact loading of aluminium foam,” Materials and Design, 44(2013), 311–319.

    Article  Google Scholar 

  5. P.J. Tan, S.R. Reid, J.J. Harrigan, Z. Zou, S. Li, “Dynamic compressive strength properties of aluminium foams. Part II — ‘shock’ theory and comparison with experimental data and numerical models,” Journal of the Mechanics and Physics of Solids, 53(10) (2005), 2206–2230.

    Article  Google Scholar 

  6. L. A. B. da-Chuda et al., “Plasticity and damage analysis of metal foams under dynamic loading,” Materialwissenschaft und Werkstofftechnik 42(5) (2011), 356–364

    Article  Google Scholar 

  7. M. Ashby and T. Lu, “Metal foams: A survey. Science in China Series B,” Chemistry, 46(6) (2003), 521–532.

    Google Scholar 

  8. J.E. Field, S.M. Walley, W.G. Proud, H.T. Goldrein, and C.R. Siviour, “Review of experimental techniques for high rate deformation and shock studies,” International Journal of Impact Engineering, 30(7) (2004), 725–775

    Article  Google Scholar 

  9. A.F. Bastawros, H.B. Smith and A.G. Evans, “Experimental analysis of deformation mechanics of closed-cell aluminium alloy foam,” J. of Mechanics and Physics of Solids, vol. 48, 2000, pp.301–322.

    Article  Google Scholar 

  10. Y. Mu, G. Yao, L. Liang, H. Lou and G. Zu, “Deformation of close-cell aluminium foam in compression” Scriptal Materilia, vol.63, 2010, pp. 629–632.

    Article  Google Scholar 

  11. D. Ruan, G. Lu, F.L. Chen, E. Siores, “Compressive behavior of aluminium foams at low and medium strain rates”, J. Composite Structures, vol. 57, 2002, pp. 331–336.

    Article  Google Scholar 

  12. Y. Sugamura, J. Meyer, M.Y. He, H. Bart-smith, J. Grenstedt and A.G. Evans “On the mechanical performance of closed cell Al alloy foam.” Acta Materilia, vol.45(12), 1007, pp.5245–5259.

    Google Scholar 

  13. M. Vesenjak, M. Borovinšek, Z. Ren, S. Irie, and S. Itoh, “Behavior of Metallic Foam under Shock Wave Loading,” Metals, 2(3) (2012), 258–264

    Article  Google Scholar 

  14. P.J. Tan, S.R. Reid, J.J. Harrigan, Z. Zou, and S. Li, “Dynamic compressive strength properties of aluminium foams. Part II — ‘shock’ theory and comparison with experimental data and numerical models,” Journal of the Mechanics and Physics of Solids, 53(10) (2005), 2206–2230.

    Article  Google Scholar 

  15. A.G. Hanssen, L. Enstock, and M. Langseth, “Close-range blast loading of aluminium foam panels,” International Journal of Impact Engineering, 27(6) (2002), 593–618.

    Article  Google Scholar 

  16. I. Elnasri, S. Pattofatto, H. Zhao, H. Tsitsiris, F. Hild, and Y. Girard, “Shock enhancement of cellular structures under impact loading: Part I Experiments,”. Journal of the Mechanics and Physics of Solids, 55(12) (2007), 2652–2671

    Article  Google Scholar 

  17. S.L. Lopatnikov, B.A. Gama, M.J. Haque, C. Krauthauser, and J.W. Gillespie Jr, “Highvelocity plate impact of metal foams’” International Journal of Impact Engineering, 30(4) (2004), 421–445

    Article  Google Scholar 

  18. M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, “Metal Foams: a design guide,” Huchinson, J.W. & Wadley, H.N.G. Butterworth-Heinemann. Publications, 2000.

    Google Scholar 

  19. M. Vesenjak, M. Borovinšek, Z. Ren, S. Irie, and S. Itoh, “Behavior of Metallic Foam under Shock Wave Loading,” Metals, 2(3) (2012), 258–264.

    Article  Google Scholar 

  20. H.J. Christ, U. Krupp, A. Ohrndorf, P. Schmidt, “Mechanische untersuchungen eines geschlossenporigen aluminiumschaums” Proceedings of zur Werkstoffprüfung Bad Nauheim, Germany, 7–8, (2000).

    Google Scholar 

  21. X.M. Xiang, Y.L. Li, T. Suo, and B. Hou, “Shock enhancement of aluminum foam under impact loading using FEM simulations,” Advanced Materials Research, 160 (2011), 1077–1082.

    Google Scholar 

  22. A. Paul and U. Ramamurty , “ Strain rate sensitivity of close cell aluminium foam,” Materials science and Engineering , 281 (1–2) (2000), 1–7.

    Article  Google Scholar 

  23. Yi, F., Zhu, Z., Zu, F., Hu, S., & Yi, P. (2001). Strain rate effects on the compressive property and the energy-absorbing capacity of aluminum alloy foams. Materials Characterization, 47(5), 417–422

    Article  Google Scholar 

  24. H.M. Hsiao, I.M. Daniel, R.D. Coreds “Strain rate effects on the transverse compressive and shear behavior of undirectional composites,” J Compos Mater, 33 (1999), 1620–1642

    Article  Google Scholar 

  25. M.A. Islam, P.J. Hazell, J.P. Escobedo and M. Saadatfar, “Insitu Quasistatic Compression and microstructural characterization of Aluminium Foams of Different Cell Topology,” XII International Conference on Applied Mechanics and Mechanical Engineering (ICAMME 2014:), 11–12 December, Melbourne, Australia

    Google Scholar 

  26. O.E. Petel, S. Ouellet, D.L. Frost and A.J. Higgins, “Shock Hugonoit measurements in Foam,” Journal of Physics Series 500(2014), 112050.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Islam, M.A., Escobedo, J.P., Hazell, P.J., Appleby-Thomas, G.J., Quadir, M.Z. (2015). Characterization of Closed-Cell Aluminium Foams Subjected to Compressive Loading. In: Carpenter, J.S., et al. Characterization of Minerals, Metals, and Materials 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-48191-3_21

Download citation

Publish with us

Policies and ethics