Skip to main content

Higher Jumping of a Biped Musculoskeletal Robot with Foot Windlass Mechanism

  • Conference paper
  • First Online:
Book cover Intelligent Autonomous Systems 14 (IAS 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 531))

Included in the following conference series:

  • 2775 Accesses

Abstract

The complex of human foot plays an important role in the locomotion. Properly replicating the human foot characteristics on the humanoid robot foot design is supposed to improve the robot locomotion performance. In this research, we proposed three kinds of foot design, stiff foot, the windlass mechanism foot (with stiff plantar fascia) and the windlass mechanism foot (with elastic plantar fascia). Using a musculoskeletal biped robot and via a large set of dropping jump experiments, we confirmed that (1) the robot could achieve toe-off motion in the lifting off phase of jumping and (2) the windlass mechanism could increase the jumping height. This investigation on robot foot is expected to both improve the humanoid robot jumping performance and help us understanding how human achieve high performance locomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kwon, S., Park, J.: Kinesiology-based robot foot design for human-like walking. Int. J. Adv. Robot. Syst. 9 (2012)

    Google Scholar 

  2. Ogura, Y., Shimomura, K., Kondo, H., Morishima, A., Okubo, T., Momoki, S., Lim, H.-O., Takanishi, A.: Human-like walking with knee stretched, heel-contact and toe-off motion by a humanoid robot. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3976–3981. IEEE (2006)

    Google Scholar 

  3. Minakata, H., Seki, H., Tadakuma, S.: A study of energy-saving shoes for robot considering lateral plane motion. IEEE Trans. Ind. Electron. 55(3), 1271–1276 (2008)

    Article  Google Scholar 

  4. Hashimoto, K., Yoshimura, Y., Kondo, H., Lim, H.-O., Takanishi, A.: Realization of quick turn of biped humanoid robot by using slipping motion with both feet. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 2041–2046. IEEE (2011)

    Google Scholar 

  5. Sellaouti, R., Stasse, O., Kajita, S., Yokoi, K., Kheddar, A.: Faster and smoother walking of humanoid hrp-2 with passive toe joints. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4909–4914. IEEE (2006)

    Google Scholar 

  6. Kajita, S., Kaneko, K., Morisawa, M., Nakaoka, S., Hirukawa, H.: Zmp-based biped running enhanced by toe springs. In: 2007 IEEE International Conference on Robotics and Automation, pp. 3963–3969. IEEE (2007)

    Google Scholar 

  7. Raibert, M.H.: Legged Robots That Balance. MIT press (1986)

    Google Scholar 

  8. Gefen, A.: Stress analysis of the standing foot following surgical plantar fascia release. J. Biomech. 35(5), 629–637 (2002)

    Article  Google Scholar 

  9. Gefen, A.: The in vivo elastic properties of the plantar fascia during the contact phase of walking. Foot Ankle Int. 24(3), 238–244 (2003)

    Article  Google Scholar 

  10. Stainsby, G.: Pathological anatomy and dynamic effect of the displaced plantar plate and the importance of the integrity of the plantar plate-deep transverse metatarsal ligament tie-bar. Ann. R. Coll. Surg. Engl. 79(1), 58 (1997)

    Google Scholar 

  11. Hamel, A.J., Donahue, S.W., Sharkey, N.A.: Contributions of active and passive toe flexion to forefoot loading. Clin. Orthop. Relat. Res. 393, 326–334 (2001)

    Article  Google Scholar 

  12. Abbott, B., Bigland, B., Ritchie, J.: The physiological cost of negative work. J. Physiol. 117(3), 380–390 (1952)

    Article  Google Scholar 

  13. Niiyama, R., Kuniyoshi, Y.: Design principle based on maximum output force profile for a musculoskeletal robot. Ind. Robot Int. J. 37(3), 250–255 (2010)

    Article  Google Scholar 

  14. Hosoda, K., Sakaguchi, Y., Takayama, H., Takuma, T.: Pneumatic-driven jumping robot with anthropomorphic muscular skeleton structure. Auton. Robots 28(3), 307–316 (2010)

    Article  Google Scholar 

  15. Fujii, F., Murata, H., Hirose, Y., Okada, T.: A simple phenomenological modeling of mckibben pneumatic actuator and its application to control. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 4724–4730. IEEE (2013)

    Google Scholar 

  16. Wickiewicz, T.L., Roy, R.R., Powell, P.L., Edgerton, V.R.: Muscle architecture of the human lower limb. Clinical Orthop. Relat. Res. 179, 275–283 (1983)

    Article  Google Scholar 

  17. Friederich, J.A., Brand, R.A.: Muscle fiber architecture in the human lower limb. J. Biomech. 23(1), 91–95 (1990)

    Article  Google Scholar 

  18. Hoy, M.G., Zajac, F.E., Gordon, M.E.: A musculoskeletal model of the human lower extremity: the effect of muscle, tendon, and moment arm on the moment-angle relationship of musculotendon actuators at the hip, knee, and ankle. J. Biomech. 23(2), 157–169 (1990)

    Article  Google Scholar 

  19. Paul, C., Bellotti, M., Jezernik, S., Curt, A.: Development of a human neuro-musculo-skeletal model for investigation of spinal cord injury. Biol. Cybern. 93(3), 153–170 (2005)

    Article  MATH  Google Scholar 

  20. van Ingen Schenau, G.J., Pratt, C.A., Macpherson, J.M.: Differential use and control of mono-and biarticular muscles. Hum. Mov. Sci. 13(3), 495–517 (1994)

    Google Scholar 

  21. Bobbert, M.F., van Ingen Schenau, G.J.: Coordination in vertical jumping. J. Biomech. 21(3), 249–262 (1988)

    Google Scholar 

  22. Pandy, M.G., Zajac, F.E.: Optimal muscular coordination strategies for jumping. J. Biomech. 24(1), 1–10 (1991)

    Article  Google Scholar 

  23. Farley, C.T., Morgenroth, D.C.: Leg stiffness primarily depends on ankle stiffness during human hopping. J. Biomech. 32(3), 267–273 (1999)

    Article  Google Scholar 

  24. Funase, K., Higashi, T., Sakakibara, A., Imanaka, K., Nishihira, Y., Miles, T.: Patterns of muscle activation in human hopping. Eur. J. Appl. Physiol. 84(6), 503–509 (2001)

    Article  Google Scholar 

  25. Auyang, A.G., Yen, J.T., Chang, Y.-H.: Neuromechanical stabilization of leg length and orientation through interjoint compensation during human hopping. Exp. Brain Res. 192(2), 253–264 (2009)

    Article  Google Scholar 

  26. Voigt, M., Dyhre-Poulsen, P., Simonsen, E.B.: Modulation of short latency stretch reflexes during human hopping. Acta Physiol. Scand. 163(2), 181–194 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangxiao Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Liu, X., Duan, Y., Rosendo, A., Ikemoto, S., Hosoda, K. (2017). Higher Jumping of a Biped Musculoskeletal Robot with Foot Windlass Mechanism. In: Chen, W., Hosoda, K., Menegatti, E., Shimizu, M., Wang, H. (eds) Intelligent Autonomous Systems 14. IAS 2016. Advances in Intelligent Systems and Computing, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-319-48036-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48036-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48035-0

  • Online ISBN: 978-3-319-48036-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics