Skip to main content

Mammalian Cell-Based Biosensors

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Cell Biosensors
  • 104 Accesses

Abstract

The chapter deals with the start-of the art of mammalian cell-based biosensors given the main emphasize to optical, electrochemical, impedimetric (ECIS) and quartz microbalance (QMB) sensing. Because fluorescence sensing is the most common detection mode, the corresponding development of reporter gene constructs is dealt in detail. In three-dimensional cell-constructs the scaffold is very important for the structure of the cells, the survival time, the interaction with the neighbor cell or with other kinds of cells therefore a small chapter will deal with the material basis and special properties various scaffolds have (in dependence upon the cell line used).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arndt S, Seebach J, Psathaki K, Galla HJ, Wegener J (2004) Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosens Bioelectron 19:583

    CAS  PubMed  Google Scholar 

  • Aruoja V, Dubourguier H-C, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461

    CAS  PubMed  Google Scholar 

  • Banerjee P, Bhunia AK (2009) Mammalian cell-based biosensors for pathogens and toxins. Trends Biotechnol 27:179

    CAS  PubMed  Google Scholar 

  • Banerjee P, Lenz D, Robinson JP, Rickus JL, Bhunia AK (2007) A novel and simple cell-based detection system with a collagen-encapsulated B-lymphocyte cell line as a biosensor for rapid detection of pathogens and toxins. Lab Investig 88:196

    PubMed  Google Scholar 

  • Bouaziz C, Bouslimi A, Kadri R, Zaied C, Bacha H, Abid-Essefi S (2013) The in vitro effects of zearalenone and T-2 toxins on Vero cells. Exp Toxicol Pathol 65:497

    CAS  PubMed  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802

    CAS  PubMed  Google Scholar 

  • Chen P, Taniguchi A (2012) Detection of DNA damage response caused by different forms of titanium dioxide nanoparticles using sensor cells. J Biosens Bioelectron 3. https://doi.org/10.4172/2155-6210.1000129

  • Chen P, Migita S, Kanehira K, Sonezaki S, Taniguchi A (2011a) Development of sensor cells using NF- κB pathway activation for detection of nanoparticle-induced inflammation. Sensors 11:7219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen P, Migita S, Kanehira K, Sonezaki S, Taniguchi A (2011b) Development of sensor cells using NF-κB pathway activation for detection of nanoparticle-induced inflammation. Sensors 11:7219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corbisier P, van der Lelie D, Borremans B, Provoost A, Lorenzo V, Brown NL, Lloyd JR, Hobman JL, Csöregi E, Johansson G, Mattiasson B (1999) Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Anal Chim Acta 387:235

    CAS  Google Scholar 

  • D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16:337

    PubMed  Google Scholar 

  • Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100:2705

    CAS  PubMed  Google Scholar 

  • Dubiak-Szepietowska M, Karczmarzyk A, Winkler T, Feller K-H (2016a) A cell-based biosensor for nanomaterials cytotoxicity assessment in three dimensional cell culture. Toxicology 370:60

    CAS  PubMed  Google Scholar 

  • Dubiak-Szepietowska M, Karczmarzyk A, JÓ§nsson-Niedziółka M, Winkler T, Feller K-H (2016b) Development of complex-shaped liver multicellular spheroids as a human-based model for nanoparticle toxicity assessment in vitro. Toxicol Appl Pharmacol 294:78

    CAS  PubMed  Google Scholar 

  • El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442:403

    CAS  PubMed  Google Scholar 

  • Garzón V, Pinacho DG, Bustos R-H, Garzón G, Bustamante S (2019) Optical biosensors for therapeutic drug monitoring. Biosensor 9:132. https://doi.org/10.3390/bios9040132

    Article  CAS  Google Scholar 

  • Ghim CM, Lee SK, Takayama S, Mitchell RJ (2010) The art of reporter proteins, in science: past, present and future applications. BMB Rep 43:451

    CAS  PubMed  Google Scholar 

  • Giaever I, Keese CR (1984) Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc Natl Acad Sci U S A 81:3761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giaever I, Keese CR (1993) A morphological biosensor for mammalian cells. Nature 366:591

    CAS  PubMed  Google Scholar 

  • Gui Q, Lawson T, Shan S, Yan L, Liu Y (2017) The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors 17:1623

    PubMed Central  Google Scholar 

  • Gupta RK, Patterson SS, Ripp S, Simpson ML, Sayler GS (2003) Expression of the photorhabdus luminescense lux genes (luxA, B, C, D, and E) in Saccharomyces cerevisiae. FEMS Yeast Res 4:305

    CAS  PubMed  Google Scholar 

  • Gupta N, Renugopalakrishnan V, Liepmann D, Paulmurugan R, Malhotra BD (2019) Cell-based biosensors: recent trends, challenges and future perspectives. Biosens Bioelectron 141:111435

    CAS  PubMed  Google Scholar 

  • Gutiérrez JC, Amaro F, Martin-Gonzáles A (2015) Heavy metal whole-cell biosensors using eukaryotic microorganisms: an updated critical review. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.00048

  • Haibo S, Tiean Z, Jiajin Hu H (2017) A high-throughput QCM chip configuration for the study of living cells and cell-drug interactions. Anal Bioanal Chem 409:6463–6473

    Google Scholar 

  • Heitmann V, Wegener J (2007) Monitoring cell adhesion by piezoresonators: impact of increasing oscillation amplitudes. Anal Chem 79:3392–3400

    CAS  PubMed  Google Scholar 

  • Hofmann U, Michaelis S, Winckler T, Wegener J, Feller K-H (2013) A whole-cell biosensor as alternative to skin irritation tests. Biosens Bioelectron 39:156

    CAS  PubMed  Google Scholar 

  • Hofmann U, Priem M, Bartzsch C, Winckler T, Feller K-H (2014) A sensitive sensor cell line for the detection of oxidative stress responses in cultured human keratinocytes. Sensors 14:11293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong J, Kandasamy K, Marimuthu M, Choi CS, Kim S (2011) Electrical cell-substrate impedance sensing as a non-invasive tool for cancer cell study. Analyst 136:237–245

    CAS  PubMed  Google Scholar 

  • Hui J, Jiang D, Shao J, Sun X, J. (2016) Wang, high-throughput living cell-based optical biosensor for detection of bacterial lipopolysaccharide (LPS) using a red fluorescent protein reporter system. Sci Rep 6:36987. https://doi.org/10.1038/srep36987

    Article  CAS  Google Scholar 

  • Janshoff A, Galla HJ, Steinem C (2000) Piezoelectric mass-sensing devices as biosensors-an alternative to optical biosensors? Angew Chem Int Ed Engl 39:4004–4032

    CAS  PubMed  Google Scholar 

  • Jiang H, Jiang D, Shao J, Sun X, Jiasheng W (2016) High-throughput living cell-based optical biosensor for detection of bacterial lipopolysaccharide (LPS) using a red fluorescent protein reporter system. Sci Rep 6:36987. https://doi.org/10.1038/srep36987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kain SR (1999) Green fluorescent protein (GFP): applications in cell-based assays for drug discovery. Drug Discov Today 4:304

    CAS  PubMed  Google Scholar 

  • Keese CR, Wegener J, Walker SH, Giaever I (2001) Electrical wound-healing assay for cells in vitro. Proc Natl Acad Sci U S A 101:1554

    Google Scholar 

  • King KR, Wang S, Irimia D, Jayaraman A, Toner M, Yarmush ML (2007) A high-throughput microfluidic real-time gene expression living cell array. Lab Chip 7:77

    CAS  PubMed  Google Scholar 

  • Kintzios SE (2006) Cell-based biosensors in proteomic analysis. Front Drug Des Discov 2:225

    CAS  Google Scholar 

  • Lagarde F, Jaffrezic-Renault N (2011) Cell-based electrochemical biosensors for water quality assessment. Anal Bioanal Chem 400:947

    CAS  PubMed  Google Scholar 

  • Li N, Tourovskaia A, Folch A (2003) Biology on a chip: microfabrication for studying the behavior of cultured cells. Crit Rev Biomed Eng 31:423

    PubMed  PubMed Central  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    CAS  PubMed  Google Scholar 

  • Liu Q, Wu C, Cai H, Hu N, Zhou J, Wang P (2014a) Cell-based biosensors and their application in biomedicine. Chem Rev 114:6423

    CAS  PubMed  Google Scholar 

  • Liu F, Nordin AN, Li F, Voiculescu I (2014b) A lab-on-chip cell-based biosensor for label-free sensing of water toxicants. Lab Chip 14:1270

    CAS  PubMed  Google Scholar 

  • Lord MS, Mod C, Foss M, Duch M, Simmons A, Pedersen FS, Milthorpe BK, Besenbacher F (2006a) Monitoring cell adhesion on tantalum and oxidised polystyreneusing a quartz crystal microbalance with dissipation. Biomaterials 27:4529–4537

    CAS  PubMed  Google Scholar 

  • Lord MS, Modin C, Foss M, Duch M, Simmons A, Pedersen FS, Milthorpe BK, Besenbacher F (2006b) Monitoring cell adhesion on tantalum and oxidized polystyrene using a quartz crystal microbalance with dissipation. Biomaterials 27:4529–4537

    CAS  PubMed  Google Scholar 

  • Lu X, Ye Y, Zhang Y, Sun X (2020) Current research progress of mammalian cell-based biosensors on the detection of foodborne pathogens and toxins. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2020.1809341

  • Marx KA, Zhou T, Montrone A, Schulze H, Braunhut SJ (2001) A quartz crystal microbalance cell biosensor: detection of microtubule alterations in living cells at nM nocodazole concentrations. Biosens Bioelectron 16(9–12):773–782

    CAS  PubMed  Google Scholar 

  • Marx KA, Zhou T, Montrone A, McIntosh D, Braunhut SJ (2007) A comparative study of the cytoskeleton binding drugs nocodazole and taxol with a mammalian cell quartz crystal microbalance biosensor: different dynamic responses and energy dissipation effects. Anal Biochem 361:77–92

    CAS  PubMed  Google Scholar 

  • May KML, Wang Y, Bachas LG, Anderson KW (2004a) Development of a whole-cell-based biosensor for detecting histamine as a model toxin. Anal Chem 76:4156

    CAS  PubMed  Google Scholar 

  • May KML, Wang Y, Bachas LG, Anderson KW (2004b) Development of a whole-cell based biosensor for detecting histamine as a model toxin. Anal Chem 76:4156

    CAS  PubMed  Google Scholar 

  • McElwee MK, Song MO, Freedman JH (2009) Copper activation of NF- κB signaling in HepG2 cells. J Mol Biol 393(5):1013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Rev 55:123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michaelis S, Robelek R, Wegener J (2012) Adv Biochem Engin/Biotechnol 126:33

    CAS  Google Scholar 

  • Moschopoulou G, Vitsa K, Bem F, Vassilakos N, Perdikaris A, Blouhos B, Yialouris C, Frosyniotis D, Anthopoulos I, Mangana O, Nomikou K, Rodeva V, Kostova D, Grozeva S, Michaelides A, Simonian A, Kintzios S (2008) Engineering of the membrane of fibroblast cells with virus-specific antibodies: a novel biosensor tool for virus detection. Biosens Bioelectron 24:1033

    PubMed  Google Scholar 

  • O’Shaughnessy J, Pancrazio JJ (2007) Broadband detection of environmental neurotoxicants. Anal Chem 79:8838

    Google Scholar 

  • Palmer AE, Qin Y, Park JG, McCombs JE (2011) Design and application of genetically encoded biosensors. Trends Biotechnol 29:144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8:839

    CAS  PubMed  Google Scholar 

  • Pancrazio JJ, Whelan JP, Borkholder DA, Ma W, Stenger DA (1999) Development and application of cell-based biosensors. Ann Biomed Eng 27:697

    CAS  PubMed  Google Scholar 

  • Pietuch A, Bruckner BR, Schneider D, Tarantola M, Rosman C, Sonnichsen C, Janshoff A (2015) Mechanical properties of MDCK II cells exposed to gold nanorods. Beilstein J Nanotechnol 6:223–231

    PubMed  PubMed Central  Google Scholar 

  • Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229

    CAS  PubMed  Google Scholar 

  • Prendecka M, Frankowski J, Sobieszek G, Kapka-Skrzypczak L, Skwarek-Dziekanowska A, MaÅ‚ecka-Massalska T (2018) Electric cell substrate impedance sensing (ECIS) as a unique technique in cancer metastasis research. J Pre Clin Clin Res 12:142

    Google Scholar 

  • Rider TH, Petrovick MS, Nargi FE, Harper JD, Schwoebel ED, Mathews RH, Blanchard DJ, Bortolin LT, Young AM, Chen J, Hollis MA (2003) A B cell-based sensor for rapid identification of pathogens. Science 301:213–215

    CAS  PubMed  Google Scholar 

  • Saydé T, El Hamoui O, Alies B, Gaudin K, Lespes G, Battu S (2021) Biomaterials for three-dimensional cell culture: from applications in oncology to nanotechnology. Nano 11:481–509. https://doi.org/10.3390/nano11020481

    Article  CAS  Google Scholar 

  • Sorensen SJ, Burmolle M, Hansen LH (2006) Making bio-sense of toxicity: new developments in whole-cell biosensors. Curr Opin Biotechnol 17:11

    CAS  PubMed  Google Scholar 

  • Stenger DA, Gross GW, Keefer EW, Shaffer KM, Andreadis JD, Ma W, Pancrazio JJ (2001) Detection of physiologically active compounds using cell-based biosensors. Trends Biotechnol 19:304

    CAS  PubMed  Google Scholar 

  • Stolwijk JA, Wegener J (2019) Impedance-based assays along the life span of adherent mammalian cells in vitro: from initial adhesion to cell death. Biorev. https://doi.org/10.1007/11663_2019_7

  • Sun J-Z, Kingori GP, Si R-W, Zhai D-D, Liao Z-H, Sun D-Z, Zheng T, Yong Y-C (2015) Microbial fuel cell-based biosensors for environmental monitoring: a review. Water Sci Technol 71(6):801

    CAS  PubMed  Google Scholar 

  • Tarantola M, Schneider D, Sunnick E, Adam H, Pierrat S, Rosman C, Breus V, Sonnichsen C, Basche T, Wegener J, Janshoff A (2009) Cytotoxicity of metal and semiconductor nanoparticles indicated by cellular micromotility. ACS Nano 3:213–222

    CAS  PubMed  Google Scholar 

  • Vats K, Benoit DS (2013) Dynamic manipulation of hydrogels to control cell behavior: a review. Tissue Eng Part B Rev 19:455–469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Védrine C, Leclerc J-C, Durrieu C, Tran-Minh C (2003) Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens Bioelectron 18:457

    PubMed  Google Scholar 

  • Wang T-H, Hui G-H, Deng S-P (2010) A novel sweet taste cell-based sensor. Biosens Bioelectron 26:929

    CAS  PubMed  Google Scholar 

  • Wegener J (2015) Cell-based microarrays for in vitro toxicology. Annu Rev Anal Chem 8:335

    CAS  Google Scholar 

  • Wegener J, Janshoff A, Galla HJ (1998) Cell adhesion monitoring using a quartz crystal microbalance: comparative analysis of different mammalian cell lines. Eur Biophys J 28:26–37

    CAS  Google Scholar 

  • Wegener J, Keese CR, Giaever I (2000a) Electric cell-substrate impedance sensing as a non-invasive means to follow the kinetics of cell spreading on artificial surfaces. Exp Cell Res 259:158

    CAS  PubMed  Google Scholar 

  • Wegener J, Seebach J, Janshoff A, Galla HJ (2000b) Analysis of the composite response of shear wave resonators to the attachment of mammalian cells. Biophys J 78:2821–2833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie F, Xu Y, Wang L, Mitchelson K, Xing W, Cheng J (2012) Use of cellular electrical impedance sensing to assess in vitro cytotoxicity of anticancer drugs in a human kidney cell nephrotoxicity model. Analyst 137:1343–1350

    CAS  PubMed  Google Scholar 

  • Xing JZ, Zhu L, Gabos S, Xie L (2006) Microelectronic cell sensor assay for detection of cytotoxicity and prediction of acute toxicity. Toxicol In Vitro 20:995

    CAS  PubMed  Google Scholar 

  • Xu G, Ye X, Qin L, Xu Y, Li Y, Li R, Wang P (2005) Cell-based biosensors based on light-addressable potentiometric sensors for single cell monitoring. Biosens Bioelectron 20:1757

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Heinz Feller .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Feller, KH. (2021). Mammalian Cell-Based Biosensors. In: Thouand, G. (eds) Handbook of Cell Biosensors. Springer, Cham. https://doi.org/10.1007/978-3-319-47405-2_193-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47405-2_193-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47405-2

  • Online ISBN: 978-3-319-47405-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Mammalian Cell-Based Biosensors
    Published:
    12 June 2021

    DOI: https://doi.org/10.1007/978-3-319-47405-2_193-2

  2. Original

    Mammalian Cell-Based Biosensors
    Published:
    08 May 2021

    DOI: https://doi.org/10.1007/978-3-319-47405-2_193-1