Skip to main content

Proposal of Singular-Unit Restoration by Focusing on the Spatial Continuity of Topographical Statistics in Spectral Domain

  • Conference paper
  • First Online:
Book cover Neural Information Processing (ICONIP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9950))

Included in the following conference series:

Abstract

An interferogram which interferometric synthetic aperture radar (InSAR) acquires includes singular points (SPs), which cause an unwrapping error. It is very important to remove the SP. We propose a filtering technique in order to eliminate the distortion around a SP. In this proposed filter, a complex-valued neural network (CVNN) learns the continuous changes of topographical statistics in the spectral domain. CVNN predicts the spectrum around a singular unit (SU), i.e., the four pixels constituting a SP, to restore the SU. The proposed method is so effective in the removal of the distortion at the SU that it allows us to generate a highly accurate digital elevation model (DEM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Costantini, M.: A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 36(3), 813–821 (1998)

    Article  Google Scholar 

  2. Danudirdjo, D., Hirose, A.: Local subpixel coregistration of interferometric synthetic aperture radar images based on fractal models. IEEE Trans. Geosci. Remote Sens. 51(7), 4292–4301 (2013)

    Article  Google Scholar 

  3. Danudirdjo, D., Hirose, A.: Anisotropic phase unwrapping for synthetic aperture radar interferometry. IEEE Trans. Geosci. Remote Sens. 53(7), 4116–4126 (2015)

    Article  Google Scholar 

  4. Danudirdjo, D., Hirose, A.: InSAR image regularization and DEM error correction with fractal surface scattering model. IEEE Trans. Geosci. Remote Sens. 53(3), 1427–1439 (2015)

    Article  Google Scholar 

  5. Goldstein, R.M., Zebker, H.A., Werner, C.L.: Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci. 23, 713–720 (1988)

    Article  Google Scholar 

  6. Goldstein, R.M., Werner, C.L.: Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 25(21), 4035–4038 (1998)

    Article  Google Scholar 

  7. Hirose, A.: Complex-Valued Neural Networks, 2nd edn. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  8. Lee, J.S., Papathanassiou, K., Ainsworth, T., Grunes, M., Reigber, A.: A new technique for phase noise filtering of SAR interferometric phase images. IEEE Trans. Geosci. Remote Sens. 36(5), 1456–1465 (1998)

    Article  Google Scholar 

  9. Natsuaki, R., Hirose, A.: SPEC method - a fine co-registration method for SAR interferogram. IEEE Trans. Geosci. Remote Sens. 49(1), 28–37 (2011)

    Article  Google Scholar 

  10. Natsuaki, R., Hirose, A.: InSAR local co-registration method assisted by shape-from-shading. IEEE J. Select. Top. Appl. Earth Obs. Remote Sens. 6(2), 953–959 (2013)

    Article  Google Scholar 

  11. Oshiyama, G., Hirose, A.: Distortion reduction in singularity-spreading phase unwrapping with pseudo-continuous spreading and self-clustering active localization. IEEE J. Select. Top. Appl. Earth Obs. Remote Sens. 8(8), 3846–3858 (2015)

    Article  Google Scholar 

  12. Pritt, M., Shipman, J.: Least-squares two-dimensional phase unwrapping using FFT’s. IEEE Trans. Geosci. Remote Sens. 32(3), 706–708 (1994)

    Article  Google Scholar 

  13. Suksmono, A.B., Hirose, A.: Interferometric SAR image restoration using Monte-Carlo metropolis method. IEEE Trans. Sig. Process. 50(2), 290–298 (2002)

    Article  Google Scholar 

  14. Suksmono, A.B., Hirose, A.: Progressive transform-based phase unwrapping utilizing a recursive structure. IEICE Trans. Commun. E89–B(3), 929–936 (2006)

    Article  Google Scholar 

  15. Trouvé, E., Nicolas, J., Maître, H.: Improving phase unwrapping techniques by the use of local frequency estimates. IEEE Trans. Geosci. Remote Sens. 36(6), 1963–1972 (1998)

    Article  Google Scholar 

  16. Yamaki, R., Hirose, A.: Singularity-spreading phase unwrapping. IEEE Trans. Geosci. Remote Sens. 45(10), 3240–3251 (2007)

    Article  Google Scholar 

  17. Yamaki, R., Hirose, A.: Singular unit restoration in interferograms based on complex-valued Markov random field model for phase unwrapping. IEEE Geosci. Remote Sens. Lett. 6(1), 18–22 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Hirose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Ichikawa, K., Hirose, A. (2016). Proposal of Singular-Unit Restoration by Focusing on the Spatial Continuity of Topographical Statistics in Spectral Domain. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing. ICONIP 2016. Lecture Notes in Computer Science(), vol 9950. Springer, Cham. https://doi.org/10.1007/978-3-319-46681-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46681-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46680-4

  • Online ISBN: 978-3-319-46681-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics