Skip to main content

Outline of an Arctic fjord Ecosystem Model for Kongsfjorden-Krossfjorden, Svalbard

  • Chapter
  • First Online:
Book cover The Ecosystem of Kongsfjorden, Svalbard

Part of the book series: Advances in Polar Ecology ((AVPE,volume 2))

Abstract

The main objective of this work is to present a detailed outline of an Arctic fjord ecosystem model using Kongsfjorden-Krossfjorden as a case study. Marine ecosystem models are compared, with emphasis on fjord models, towards defining best available modelling technologies. This comparison is based on an analysis of the differences in the variables and processes simulated by different models. We argue about the importance of: (i) coupling Arctic fjord models with land and glacier drainage models; (ii) including thermodynamic, hydrodynamic and ice dynamic sub-models; (iii) simulating biogeochemical processes in the water, ice and benthic environments for, at least, the macro-elements carbon, nitrogen and phosphorus. Furthermore, the energetic importance of higher trophic levels is discussed and used as an argument for their inclusion in fjord ecosystem models towards the development of end-to-end models. The complexity of all the processes mentioned above and respective interactions emphasizes the need for using different model tools and efficient couplers allowing the flow of data between them. A community-based approach with open source software seems to be the proper approach to handle the large complexity of the model strategy proposed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aksnes DL, Aure J, Kaartvedt S, Magnesen T, Richard J (1989) Significance of advection for the carrying capacities of fjord populations. Mar Ecol Prog Ser 50:263–274

    Article  Google Scholar 

  • Albretsen J, Sperrevik AK, Staalstrøm A, Sandvik AD, Vikebø F, Asplin L (2011) NorKyst-800 report no. 1: User manual and technical descriptions. Fisken og Havet 2, Havforskningsintituttets Rapportserie, Institute of Marine Research, Bergen

    Google Scholar 

  • Allen JI, Fulton EA (2010) Top-down, bottom-up or middle-out? Avoiding extraneous detail and over-generality in marine ecosystem models. Prog Oceanogr 84:129–133

    Article  Google Scholar 

  • Arrigo KR, Kremer JN, Sullivan CW (1993) A simulated Antarctic fast ice ecosystem. J Geophys Res 98:6926–6946

    Article  Google Scholar 

  • Azevedo IC, Bordalo AA, Duarte P (2014) Influence of freshwater inflow variability on the Douro estuary primary productivity: a modelling study. Ecol Model 272:1–15

    Article  CAS  Google Scholar 

  • Bacher C, Duarte P, Ferreira JG, Héral M, Raillard O (1998) Assessment and comparison of the Marennes-Oléron Bay (France) and Carlingford Lough (Ireland) carrying capacity with ecosystem models. Aquat Ecol 31:379–394

    Article  Google Scholar 

  • Baird D, Asmus H, Asmus R (2011) Carbon, nitrogen and phosphorus dynamics in nine sub-systems of the Sylt-Rømø Bight ecosystem, German Wadden Sea. Estuar Coast Shelf Sci 91:51–68

    Article  CAS  Google Scholar 

  • Baretta J, Ruardij P (eds) (1988) Tidal flat estuaries. Simulation and analysis of the Ems estuary. Springer, Berlin

    Google Scholar 

  • Baretta-Bekker JG, Baretta JW, Ebenhoh W (1997) Microbial dynamics in the marine ecosystem model ESEM ii with decoupled carbon assimilation and nutrient uptake. J Sea Res 38:195–211

    Article  Google Scholar 

  • Basedow SL, Eiane K, Tverberg V, Spindler M (2004) Advection of zooplankton in an Arctic fjord (Kongsfjorden, Svalbard). Estuar Coast Shelf Sci 60:113–124

    Article  Google Scholar 

  • Berntsen J (2000) Users guide for a modesplit sigma-coordinate numerical ocean model, version 1.0. Report, Department of Applied Mathematics, University of Bergen, Norway

    Google Scholar 

  • Beszczynska-Möller A, Weslawski JM, Walczowski W, Zajaczkowski M (1997) Estimation of glacial meltwater discharge into Svalbard coastal water. Oceanologia 39:289–297

    Google Scholar 

  • Blumberg AF, Mellor GL (1987) A description of a three-dimensional coastal ocean circulation model. In: Heaps N (ed) Three-dimensional coastal ocean models. American Geophysical Union, Washington, DC, pp 1–16

    Google Scholar 

  • Borum J, Pedersen MF, Krause-Jensen D, Christensen PB, Nielsen K (2002) Biomass, photosynthesis and growth of Laminaria saccharina in a High-Arctic fjord, NE Greenland. Mar Biol 141:11–19

    Article  Google Scholar 

  • Byun DS, Wang XH, Hart DE, Cho YK (2005) Modeling the effect of freshwater inflows on the development of spring blooms in an estuarine embayment. Estuar Coast Shelf Sci 65:351–360

    Article  Google Scholar 

  • Chapelle A (1995) A preliminary model of nutrient cycling in sediments of a Mediterranean lagoon. Ecol Model 80:131–147

    Article  CAS  Google Scholar 

  • Cottier F, Tverberg V, Inall M, Svendsen H, Nielsen F, Griffiths C (2005) Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hydrography of Kongsfjorden, Svalbard. J Geophys Res 110:C12005. https://doi.org/10.1029/2004JC002757

    Article  Google Scholar 

  • Cottier F, Nilsen F, Inall ME, Gerland S, Tverberg V, Svendsen H (2007) Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophys Res Lett 34:L10607. https://doi.org/10.1029/2007GL029948

    Article  Google Scholar 

  • Cottier FR, Nilsen F, Skogseth R, Tverberg V, Skardhamar J, Svendsen H (2010) Arctic fjords: a review of the oceanographic environment and dominant physical processes. In: Howe JA, Austin EN, Forwick M, Paetzel M (eds) Fjords systems and archives: special publication 344. Geological Society Publishing House, Bath, pp 35–50

    Google Scholar 

  • Daly KL, Wallace DWR, Smith WO Jr, Skoog A, Lara R, Gosselin M, Falck E, Yager OL (1999) Non-Redfield carbon and nitrogen cycling in the Arctic: effects of ecosystem structure and dynamics. J Geophys Res 104:3185–3199

    Article  CAS  Google Scholar 

  • de Corte D, Sintes E, Yokokawa T, Herndl GJ (2011) Changes 665 in viral and bacterial communities during the ice-melting season in the coastal Arctic (Kongsfjorden, Ny-Ålesund). Environ Microbiol 667(13):1827–1841

    Article  CAS  Google Scholar 

  • Dike PPG (2001) Coastal and shelf sea modelling. Kluwer Academic Publishers, New York

    Book  Google Scholar 

  • Doughty CE, Roman J, Faurby S, Wolf A, Haque A, Bakker ES, Malhi Y, Dunning JB Jr, Svenning J-C (2015) Global nutrient transport in a world of giants. PNAS 113:868–873

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Duarte P, Meneses R, Hawkins AJS, Zhu M, Fang J, Grant J (2003) Mathematical modelling to assess the carrying capacity for multi-species culture within coastal water. Ecol Model 168:109–143

    Article  Google Scholar 

  • Duarte P, Hawkins AJS, Pereira A (2005) How does estimation of environmental carrying capacity for bivalve culture depend upon spatial and temporal scales. In: Dame R, Olenin S (eds) The comparative role of suspension feeders in aquatic systems. Kluwer Scientific Publishers, Dordrecht, pp 121–135

    Chapter  Google Scholar 

  • Duarte P, Azevedo B, Ribeiro C, Pereira A, Falcão M, Serpa D, Bandeira R, Reia J (2007) Management oriented mathematical modelling of Ria Formosa (South Portugal). Transit Water Monogr 1:13–51. https://doi.org/10.1285/i18252273v1n1p13

    Article  Google Scholar 

  • Duarte P, Alvarez-Salgado XA, Fernández-Reiriz MJ, Piedracoba S, Labarta U (2014) A modelling study on the hydrodynamics of a coastal embayment occupied by mussel farms (Ría de Ares-Betanzos, NW Iberian Peninsula). Estuar Coast Shelf Sci 147:42–55

    Article  Google Scholar 

  • Duarte P, Assmy P, Hop H, Spreen G, Gerland S, Hudson SR (2015) The importance of vertical resolution in sea ice algae production models. J Mar Syst 145:69–90

    Article  Google Scholar 

  • Eilertsen HC, Taasen JP, Weslawski JM (1989) Phytoplankton studies in the fjords of West Spitsbergen. Physical environment and production in spring and summer. J Plankton Res 11:1245–1260

    Article  Google Scholar 

  • Fasham MJR, Ducklow HW, McKelvie SM (1990) A nitrogen-based model of plankton dynamics in the oceanic mixed layer. J Mar Res 48:591–639

    Article  CAS  Google Scholar 

  • Ferreira JG (1995) ECOWIN – an object-oriented ecological model for aquatic ecosystems. Ecol Model 79:21–34

    Article  Google Scholar 

  • Figueiras FG, Labarta U, Fernández-Reiriz MJ (2002) Coastal upwelling, primary production and mussel growth in the Rías Baixas of Galicia. Hydrobiologia 484:121–131

    Article  Google Scholar 

  • Franks PJS (2002) NPZ models of plankton dynamics: their construction, coupling to physics, and application. J Oceanogr 58:379–387

    Article  Google Scholar 

  • Fredriksen S, Karsten U, Bartsch I, Woelfel J, Koblowsky M, Schumann R, Moy SR, Steneck RS, Wiktor J, Hop H, Wiencke C (this volume-d) Chapter 9: Biodiversity of benthic macro- and microalgae from Svalbard with special focus on Kongsfjorden. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, Cham

    Google Scholar 

  • Fulton EA (2010) Approaches to end-to-end ecosystem models. J Mar Syst 81:171–183

    Article  Google Scholar 

  • Glud R, Rysgaard S (2007) The annual organic carbon budget of Young Sound, NE Greenland. In: Rysgaard S, Glud RN (eds) Carbon cycling in Arctic marine ecosystems: case study young sound. Meddr Grønland, Bioscience, vol 58. Danish Polar Center, Copenhagen, pp 194–203

    Google Scholar 

  • Guildford SJ, Hecky RE (2000) Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship? Limnol Oceanogr 45:1213–1223

    Article  CAS  Google Scholar 

  • Haidvogel DB, Arango H, Budgell WP, Cornuelle BD, Curchitser E, Di Lorenzo E, Fennel K, Geyer WR, Hermann AJ, Lanerolle L, Levin J, McWilliams JC, Miller AJ, Moore AM, Powell TM, Shchepetkin AF, Sherwood CR, Signell RP, Warner JC, Wilkin J (2008) Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the Regional Ocean Modeling System. J Comput Phys 227:3595–3624

    Article  Google Scholar 

  • Hannah C, Vezina A, John MS (2010) The case for marine ecosystem models of intermediate complexity. Prog Oceanogr 84:121–128

    Article  Google Scholar 

  • Hegseth EN, Tverberg V (2013) Effect of Atlantic water inflow on timing of the phytoplankton spring bloom in a high Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 113–114:94–105

    Article  Google Scholar 

  • Hessen DO, Leu E, Færøvig PJ, Falk-Petersen S (2008) Light and spectral properties as determinants of C:N:P ratios in phytoplankton. Deep-Sea Res II 55:2169–2175

    Article  CAS  Google Scholar 

  • Hobson KA, Welch HE (1992) Determination of trophic relationships within a high-arctic marine food web using δ13C and δ15N analysis. Mar Ecol Prog Ser 84:9–18

    Article  CAS  Google Scholar 

  • Hobson KA, Ambrose WG Jr, Renaud PE (1995) Sources of primary production, benthic-pelagic coupling, and trophic relationships within the Northeast Water Polynya: insights from δ13C and δ15N analysis. Mar Ecol Prog Ser 128:1–10

    Article  Google Scholar 

  • Hobson KA, Fisk A, Karnovsky N, Holst M, Gagnon J-M, Fortier M (2002) A stable isotope (δ13C, δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants. Deep-Sea Res II 49:5131–5150

    Article  CAS  Google Scholar 

  • Hodal H, Falk-Petersen S, Hop H, Kristiansen S, Reigstad M (2011) Spring bloom dynamics in Kongsfjorden, Svalbard: nutrients, phytoplankton, protozoans and primary production. Polar Biol 35:1989–2005

    Google Scholar 

  • Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S, Eiane K, Mehlum F, Gulliksen B, Wlodarska-Kowalczuk M, Lydersen C, Weslawski JM, Cochrane S, Gabrielsen GW, Leakey RJG, Lønne OJ, Zajaczkowski M, Falk-Petersen S, Kendall M, Wängberg S-Å, Bischof K, Voronkov AY, Kovaltchouk NA, Wiktor J, Poltermann M, di Prisco G, Papucci C, Gerland S (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208

    Google Scholar 

  • Hop H, Falk-Petersen S, Svendsen H, Kwasniewski S, Pavlov V, Pavlova O, Søreide JE (2006) Physical and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden. Prog Oceanogr 71:182–231

    Article  Google Scholar 

  • Hop H, Wiencke C, Vögele B, Kovaltchouk NA (2012) Species composition, zonation, and biomass of marine benthic macroalgae in Kongsfjorden, Svalbard. Bot Mar 55:399–414

    Article  Google Scholar 

  • Hop H, Kovaltchouk NA, Wiencke C (2016) Distribution of macroalgae in Kongsfjorden, Svalbard. Polar Biol 39(11):2037–2051

    Article  Google Scholar 

  • Huang HS, Chen CS, Cowles GW, Winant CD, Beardsley RC, Hedstrom KS, Haidvogel DB (2008) FVCOM validation experiments: comparisons with ROMS for three idealized barotropic test problems. J Geophys Res Oceans 113. https://doi.org/10.1029/2007jc004557

  • Hunke EC, Lipscomb WH, Turner AK, Jeffery N, Elliot S (2013) CICE: the Los Alamos Sea Ice Model. Documentation and user’s manual version 5.0. Los Alamos National Laboratory, Washington, DC

    Google Scholar 

  • Ingvaldsen R, Reitan MB, Svendsen H, Asplin L (2001) The upper layer circulation in the Kongsfjorden and Krossfjorden—a complex fjord system on the west coast of Spitsbergen. Mem Natl Inst Polar Res, Spec Issue 54:393–407

    Google Scholar 

  • Jeffery N, Hunke EC, Elliott S (2011) Modelling the transport of passive tracers in sea ice. J Geophys Res 116:C07020

    Article  CAS  Google Scholar 

  • Jin M, Deal C, Wang J (2008) A coupled ice-ocean ecosystem model for I-D and 3-D applications in the Bering and Chukchi Seas. Chin J Polym Sci 19:218–229

    Google Scholar 

  • Jin M, Deal C, Lee SH, Elliot S, Hunke E, Maltrud M, Jeffery N (2012) Investigation of Arctic sea ice and oceanic primary production for the period 1992–2007 using a 3-D global ice-ocean ecosystem model. Deep-Sea Res II 81–84:28–35

    Article  Google Scholar 

  • Kendall MA, Widdicombe S, Weslawski JM (2003) A multiscale study of the biodiversity of the benthic infauna of the high latitude Kongsfjord, Svalbard. Polar Biol 26:383–388

    Google Scholar 

  • Kooijman SALM (2000) Dynamic and energy budgets in biological systems. University Press, Cambridge

    Book  Google Scholar 

  • Kramer F, Obleiter F, Krismer T, Kohler J, Greuell W (2013) A decade of energy and mass balance investigations on the glacier Kongsvegen, Svalbard. J Geophys Res Atmos 118:3986–4000

    Article  Google Scholar 

  • Krause-Jensen D, Kühl M, Christensen PB, Borum J (2007) Benthic primary production in young sound, northeastern Greenland. In: Rysgaard S, Glud RN (eds) Carbon cycling in Arctic marine ecosystems: case study young sound. Meddr Grønland, Bioscience, vol 58. Danish Polar Center, Copenhagen, pp 159–174

    Google Scholar 

  • Krause-Jensen D, Marbà N, Olesen B, Sejr MK, Christensen PB, Rodrigues J, Renaud PE, Blasby TJS, Rysgaard S (2012) Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland. Glob Change Biol 18:2981–2994

    Article  Google Scholar 

  • Kruss A, Tęgowski J, Tatarek A, Wiktor J, Blondel P (2012) Spatial distribution of macroalgae along the shores of Kongsfjorden (West Spitsbergen) using acoustic imaging. Pol Polar Res 38:205–229

    Article  Google Scholar 

  • Lavery TJ, Roudnew B (2014) Whales sustain fisheries: Blue whales stimulate primary production in the Southern Ocean. Mar Mamm Sci 30:888–904

    Article  CAS  Google Scholar 

  • Lavoie D, Denman K, Michel C (2005) Modelling ice algal growth and decline in a seasonally ice-covered region of the Arctic (Resolute passage, Canadian Archipelago). J Geophys Res 110:C11009

    Article  Google Scholar 

  • Luyten PJ, Jones JE, Proctor R, Tabor A, Tette P, Wild-Allen K (eds) (1999) COHERENS – A Coupled Hydrodynamic–Ecological Model for Regional and Shelf Seas. Users Documentation. Mumm Report, Management Unit of the Mathematical Models of the North Sea

    Google Scholar 

  • Lydersen C, Assmy P, Falk-Petersen S, Kohler J, Kovacs KM, Reigstad M, Steen H, Strøm H, Sundfjord A, Varpe Ø, Walczowski W, Weslawski JM, Zajaczkowski M (2014) The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. J Mar Syst 129:452–471

    Article  Google Scholar 

  • Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997) A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J Geophys Res 102:5753–5766

    Article  Google Scholar 

  • Maturilli M, Hanssen-Bauer I, Neuber R, Rex M, Edvardsen K (this volume-c) Chapter 2: The atmosphere above Ny-Ålesund – climate and global warming, ozone and surface UV radiation. In: Hop H, Wiencke C (eds) The ecosystem of Kongsfjorden, Svalbard, Advances in polar ecology 2. Springer, Cham

    Google Scholar 

  • McMeans BC, Arts MT, Lydersen C, Kovacs KM, Hop H, Falk-Petersen S, Fisk AT (2013) The role of Greenland sharks (Somniosus microcephalus) in an Arctic ecosystem: assessed via stable isotopes and fatty acids. Mar Biol 160:1223–1238

    Article  Google Scholar 

  • Mock T, Gradinger R (1999) Determination of ice algal production with a new in situ incubation technique. Mar Ecol Prog Ser 177:15–26

    Article  CAS  Google Scholar 

  • Molnár PK, Derocher AE, Thiemann GW, Lewis MA (2010a) Predicting survival, reproduction and abundance of polar bears under climate change. Biol Conserv 143:1612–1622

    Article  Google Scholar 

  • Molnár PK, Derocher AE, Klanjscek T, Lewis MA (2010b) Predicting climate change impacts on polar bear litter size. Nat Commun 2:186. https://doi.org/10.1038/ncomms1183

    Article  CAS  Google Scholar 

  • Moore JK, Doney SC, Kleypas JA, Glover DM, Fung IY (2002) An intermediate complexity marine ecosystem model for the global domain. Deep-Sea Res II 49:403–462

    Article  Google Scholar 

  • Neitsch SL, Arnold JP, Kiniry JR, Srinivasan R, Williams JR (2002) Soil and water assessment tool. User’s manual. Grassland, Soil and water research laboratory, Agricultural Research Service, USA

    Google Scholar 

  • Nilsen F, Cottier F, Skogseth R, Mattsson S (2008) Fjord–shelf exchanges controlled by ice and brine production: the interannual variation of Atlantic Water in Isfjorden, Svalbard. Cont Shelf Res 28:1838–1853

    Article  Google Scholar 

  • Nuth C, Schuler TV, Kohler J, Altena B, Hagen JO (2012) Estimating the long-term calving flux of Kronebreen, Svalbard, from geodetic elevation changes and mass-balance modelling. J Glaciol 58:119–133

    Article  Google Scholar 

  • Pauly D, Christensen V (1995) Primary production required to sustain global fisheries. Nature 374:255–257

    Article  CAS  Google Scholar 

  • Pereira A, Duarte P, Norro A (2006) Different modelling tools of aquatic ecosystems: a proposal for a unified approach. Ecol Inform 1:407–421

    Article  Google Scholar 

  • Piquet AM-T, Scheepens JF, Bolhuis H, Wiencke C, Buma AGJ (2010) Variability of protistan and bacterial communities in two Arctic fjords (Spitsbergen). Polar Biol 33:1521–1536

    Article  Google Scholar 

  • Piwosz K, Walkusz W, Hapter R, Wieczorek P, Hop H, Wiktor J (2009) Comparison of productivity and phytoplankton in a warm (Kongsfjorden) and a cold (Hornsund) Spitsbergen fjord in mid-summer 2002. Polar Biol 32:549–559

    Article  Google Scholar 

  • Pogson L, Tremblay B, Lavoie D, Michel C, Vancoppenole M (2011) Development and validation of a one-dimensional snow-ice algae model against observations in Resolute Passage, Canadian Arctic Archipelago. J Geophys Res 116:C07020. https://doi.org/10.1029/2010JC00652

    Article  Google Scholar 

  • Popova EE, Yool A, Coward AC, Aksenov YK, Alderson SG, de Cuevas BA, Anderson TR (2010) Control of primary production in the Arctic by nutrients and light: insights from a high resolution ocean general circulation model. Biogeosciences 7:3569–3591

    Article  CAS  Google Scholar 

  • Price JF, Weller RA, Pinkel R (1986) Diurnal cycling: observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J Geophys Res 91:8411–8427

    Article  Google Scholar 

  • Rasmussen LA, Kohler J (2007) Mass balance of three Svalbard glaciers reconstructed back to 1948. Polar Res 26:168–174

    Article  Google Scholar 

  • Reijmer CH, Hock R (2008) A distributed energy balance model including a multi-layer sub-surface snow model. J Glaciol 54:61–72

    Article  Google Scholar 

  • Renaud PE, Tessmann M, Evenset A, Christensen GN (2011) Benthic food-web structure of an Arctic fjord (Kongsfjorden, Svalbard). Mar Biol Res 7:13–26

    Article  Google Scholar 

  • Rokkan Iversen K, Seuthe L (2011) Seasonal microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): I. Heterotrophic bacteria, picoplankton and nanoflagellates. Polar Biol 34:731–749

    Article  Google Scholar 

  • Rose KA, Allen JI, Artioli Y, Barange M, Blackford J, Carlotti F, Cropp R, Daewel U, Edwards K, Flynn K, Hill SL, HilleRisLambers R, Huse G, Mackinson S, Megrey B, Moll A, Rivkin R, Salihoglu B, Schrum C, Shannon L, Shin Y-J, Smith SL, Smith C, Solidoro C, John MS, Zhou M (2010) End-to-end models for the analysis of marine ecosystems: challenges, issues, and next steps. Mar Coast Fish: Dyn Manag Ecosyst Sci 2:115–130

    Article  Google Scholar 

  • Ross AH, Gurney WSC, Heath MR, Hay SJ, Henderson EW (1993) A strategic simulation model of a fjord ecosystem. Limnol Oceanogr 38:128–153

    Article  CAS  Google Scholar 

  • Ross AH, Gurney WSC, Heath MR (1994) A comparative study of the ecosystem dynamics of four fjords. Limnol Oceanogr 39:318–343

    Article  Google Scholar 

  • Rysgaard S, Nielsen TG (2006) Carbon cycling in a high-arctic marine ecosystem – young sound, NE Greenland. Prog Oceanogr 71:426–445

    Article  Google Scholar 

  • Saenz BT, Arrigo KR (2012) Simulation of a sea ice ecosystem using a hybrid model for slush layer desalination. J Geophys Res 116:C07020. https://doi.org/10.1029/2011JC007544

    Article  CAS  Google Scholar 

  • Salvanes AGV (2001) Review of ecosystem models of fjords; new insights of relevance to fisheries management. Sarsia 86:441–463

    Article  Google Scholar 

  • Sanders R, Brown L, Henson S, Lucas M (2005) New production in the Irminger Basin during 2002. J Mar Syst 55:291–310

    Article  Google Scholar 

  • Scholten H, Van der Tol MWM (1998) Quantitative validation of deterministic models: when is a model acceptable? The proceedings of the summer computer simulation conference. SCS, San Diego, pp 404–409

    Google Scholar 

  • Serpa D, Ferreira PP, Caetano M, Cancela da Fonseca L, Dinis MT, Duarte P (2013) A coupled biogeochemical-dynamic energy budget model as a tool for managing fish production ponds. Sci Total Environ 463–464:861–874

    Article  PubMed  CAS  Google Scholar 

  • Seuthe L, Rokkan Iversen K, Narcy F (2011) Microbial processes in a high latitude fjord (Kongsfjorden, Svalbard): II Ciliates and dinoflagellates. Polar Biol 34:751–766

    Article  Google Scholar 

  • Sevilgen DS, de Beer D, Al-Handal AY, Brey T, Polerecky L (2014) Oxygen budgets in subtidal arctic (Kongsfjorden, Svalbard) and temperate (Helgoland, North Sea) microphytobenthic communities. Mar Ecol Prog Ser 504:27–42

    Article  CAS  Google Scholar 

  • Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Duda M, Huang XY, Wang W (2008) A description of the advanced research WRF Version 3. NCAR Technical Note NCAR/TN-475+STR

    Google Scholar 

  • Slagstad D (1987) A 4-dimensional physical model of the Barents Sea. Trondheim: SINTEF Report STF 48:F87013

    Google Scholar 

  • Slagstad D, Ellingsen IH, Wassmann P (2011) Evaluating primary and secondary production in an Arctic Ocean void of summer sea ice: an experimental simulation approach. Prog Oceanogr 90:117–131

    Article  Google Scholar 

  • Smetacek V, Klaas C, Strass VH, Assmy P, Montresor M, Cisewski B, Savoye N, Webb A, d’Ovidio F, Arrieta JM, Bathmann U, Bellerby R, Berg GM, Croot P, Gonzalez S, Henjes J, Herndl GJ, Hoffmann LJ, Leach H, Losch M, Mills MM, Neill C, Peeken I, Röttgers R, Sachs O, Sauter E, Schmidt MM, Schwarz J, Terbrüggen A, Wolf-Gladrow D (2012) Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487:313–319

    Article  CAS  PubMed  Google Scholar 

  • Stempniewicz L, Blachowiak-Samolyk K, Weslawski JM (2007) Impact of climate change on zooplankton communities, seabird populations and arctic terrestrial ecosystem–a scenario. Deep-Sea Res II 54:2934–2945

    Article  Google Scholar 

  • Sundfjord A, Albretsen J, Kasajima Y, Skogseth R, Kohler J, Nuth C, Skarðhamar J, Cottier F, Nilsen F, Asplin L, Gerland S, Torsvik T (2017) Effects of glacier runoff and wind on surface layer dynamics and Atlantic water exchange in Kongsfjorden, Svalbard; a model study. Estuar Coast Shelf Sci 187:260–272

    Article  Google Scholar 

  • Svendsen H, Beszczynska-Möller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S, Ørbæk JB, Bischof K, Papucci C, Zajaczkowski M, Azzolini R, Bruland O, Wiencke C, Winther J-G, Dallmann W (2002) The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166

    Google Scholar 

  • Tamelander T, Reigstad M, Olli K, Slagstad D, Wassmann P (2013) New production regulates export stoichiometry in the ocean. PLoS One 8:e54027. https://doi.org/10.1371/journal.pone.0054027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tedesco L, Vichi M (2014) Sea ice biogeochemistry: a guide for Modellers. PLoS One 9:e89217. https://doi.org/10.1371/journal.pone.0089217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tedesco L, Vichi M, Haapala J, Stipa T (2010) A dynamic biologically active layer for numerical studies of the sea ice ecosystem. Ocean Model 35:89–104

    Article  Google Scholar 

  • Tedesco L, Vichi M, Thomas DN (2012) Process studies on the ecological coupling between sea ice algae and phytoplankton. Ecol Model 226:120–138

    Article  Google Scholar 

  • Thingstad TF, Bellerby RGJ, Bratbak G, Børsheim KY, Egge JK, Heldal M, Larsen A, Neill C, Nejstgaard J, Norland S, Sandaa R-A, Skjoldal EF, Tanaka T, Thyrhaug R, Töpper B (2008) Counterintuitive carbon-to-nutrient coupling in an Arctic pelagic ecosystem. Nature 455:387–391

    Article  CAS  PubMed  Google Scholar 

  • Tverberg V, Nøst OA (2009) Eddy overturning across a shelf edge front: Kongsfjorden, west Spitsbergen. J Geophys Res 114:C04024. https://doi.org/10.1029/2008JC005106

    Article  CAS  Google Scholar 

  • Vancoppenolle M, Goose H, Montety A, Fichefet T, Tremblay B, Tison J-L (2010) Modeling brine and nutrient dynamics in Antarctic sea ice: the case of dissolved silica. J Geophys Res 116:C07020. https://doi.org/10.1029/2010JC006119

    Article  Google Scholar 

  • Vichi M, Pinardi N, Masina S (2007) A generalized model of pelagic biogeochemistry for the global ocean ecosystem. Part I: theory. J Mar Syst 64:89–109

    Article  Google Scholar 

  • Welch HE, Bergmann MA, Siferd TD, Martin KA, Curtis MF, Crawford RE, Conover RJ, Hop H (1992) Energy flow through the marine ecosystem of the Lancaster sound region, Arctic Canada. Arctic 45:343–357

    Article  Google Scholar 

  • Weslawski JM, Legezynska J (1998) Glacier caused zooplankton mortality? J Plankton Res 20:1233–1240

    Article  Google Scholar 

  • Weslawski JM, Pedersen G, Petersen SF, Porazinski K (2000a) Entrapment of macroplankton in an Arctic fjord basin, Kongsfjorden, Svalbard. Oceanologia 42:57–69

    Google Scholar 

  • Weslawski JM, Hacquebord L, Stempniewicz L, Malinga M (2000b) Greenland whales and walruses in the Svalbard food web before and after exploitation. Oceanologia 42:37–56

    Google Scholar 

  • Weslawski JM, Kwasniewski S, Stempniewicz L, Blachowiak-Samolyk K (2006) Biodiversity and energy transfer to top trophic levels in two contrasting Arctic fjords. Pol Polar Res 27:259–278

    Google Scholar 

  • Willis K, Cottier FR, Kwasniewski S, Wold A, Falk-Petersen S (2006) The influence of advection on zooplankton community composition in an Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 61:39–54

    Article  Google Scholar 

  • Woelfel J, Schumann R, Peine F, Flohr A, Kruss A, Tegowski J, Blondel P, Wiencke C, Karsten U (2010) Microphytobenthos of Arctic Kongsfjorden (Svalbard, Norway): biomass and potential primary production along the shore line. Polar Biol 33:1239–1253

    Article  Google Scholar 

  • Wold A, Jæger I, Hop H, Gabrielsen GW, Falk-Petersen S (2011) Arctic seabird food chains explored by fatty acid composition and stable isotopes in Kongsfjorden, Svalbard. Polar Biol 34:1147–1155

    Article  Google Scholar 

  • Yool A, Popova EE, Anderson TR (2010) MEDUSA: a new intermediate complexity plankton ecosystem model for the global domain. Geosci Model Dev Discuss 3:1939–2019

    Article  Google Scholar 

  • Zajaczkowski M, Legezynska J (2001) Estimation of zooplankton mortality caused by an Arctic glacier outflow. Oceanologia 43:341–351

    Google Scholar 

Download references

Acknowledgement

JMW was supported by the project GAME Polish National Science Center no. DEC-2012/04/A/NZ8/00661.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Duarte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duarte, P., Weslawski, J.M., Hop, H. (2019). Outline of an Arctic fjord Ecosystem Model for Kongsfjorden-Krossfjorden, Svalbard. In: Hop, H., Wiencke, C. (eds) The Ecosystem of Kongsfjorden, Svalbard. Advances in Polar Ecology, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-46425-1_12

Download citation

Publish with us

Policies and ethics