Skip to main content

Cell Cycle Remodeling and Zygotic Gene Activation at the Midblastula Transition

  • Chapter
  • First Online:
Vertebrate Development

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 953))

Abstract

Following fertilization, vertebrate embryos delay large-scale activation of the zygotic genome from several hours in fish and amphibians to several days in mammals. Externally developing embryos also undergo synchronous and extraordinarily rapid cell divisions that are accelerated by promiscuous licensing of DNA replication origins, absence of gap phases and cell cycle checkpoints, and preloading of the egg with maternal RNAs and proteins needed to drive early development. After a species-specific number of cell divisions, the cell cycle slows and becomes asynchronous, gap phases appear, checkpoint functions are acquired, and large-scale zygotic gene activation begins. These events, along with clearance of maternal RNAs and proteins, define the maternal to zygotic transition and are coordinated at a developmental milestone termed the midblastula transition (MBT). Despite the relative quiescence of the zygotic genome in vertebrate embryos, genes required for clearance of maternal RNAs and for the initial steps in mesoderm induction are robustly transcribed before MBT. The coordination and timing of the MBT depends on a mechanism that senses the ratio of nuclear to cytoplasmic content as well as mechanisms that are independent of the nuclear–cytoplasm ratio. Changes in chromatin architecture anticipate zygotic gene activation, and maternal transcription factors identified as regulators of pluripotency play critical roles in kick-starting the transition from the proliferative, pluripotent state of the early embryo to the more lineage-committed phase of development after the MBT. This chapter describes the regulation of the cell cycle and the activation of zygotic gene expression before and after the MBT in vertebrate embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aanes H, Winata CL, Lin CH, Chen JP, Srinivasan KG, Lee SG, Lim AY, Hajan HS, Collas P, Bourque G, Gong Z, Korzh V, Alestrom P, Mathavan S (2011) Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition. Genome Res 21(8):1328–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abe K, Yamamoto R, Franke V, Cao M, Suzuki Y, Suzuki MG, Vlahovicek K, Svoboda P, Schultz RM, Aoki F (2015) The first murine zygotic transcription is promiscuous and uncoupled from splicing and 3′ processing. EMBO J 34(11):1523–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agius E, Oelgeschlager M, Wessely O, Kemp C, De Robertis EM (2000) Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127(6):1173–1183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aizawa K, Shimada A, Naruse K, Mitani H, Shima A (2003) The medaka midblastula transition as revealed by the expression of the paternal genome. Gene Expr Patterns 3(1):43–47

    Article  CAS  PubMed  Google Scholar 

  • Akkers RC, van Heeringen SJ, Jacobi UG, Janssen-Megens EM, Francoijs KJ, Stunnenberg HG, Veenstra GJ (2009) A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. Dev Cell 17(3):425–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali-Murthy Z, Lott SE, Eisen MB, Kornberg TB (2013) An essential role for zygotic expression in the pre-cellular Drosophila embryo. PLoS Genet 9(4):e1003428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almouzni G, Mechali M, Wolffe AP (1990) Competition between transcription complex assembly and chromatin assembly on replicating DNA. EMBO J 9(2):573–582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Almouzni G, Mechali M, Wolffe AP (1991) Transcription complex disruption caused by a transition in chromatin structure. Mol Cell Biol 11(2):655–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almouzni G, Wolffe AP (1995) Constraints on transcriptional activator function contribute to transcriptional quiescence during early Xenopus embryogenesis. EMBO J 14(8):1752–1765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amodeo AA, Jukam D, Straight AF, Skotheim JM (2015) Histone titration against the genome sets the DNA-to-cytoplasm threshold for the Xenopus midblastula transition. Proc Natl Acad Sci U S A 112(10):E1086–E1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amon A, Irniger S, Nasmyth K (1994) Closing the cell cycle circle in yeast: G2 cyclin proteolysis initiated at mitosis persists until the activation of G1 cyclins in the next cycle. Cell 77(7):1037–1050

    Article  CAS  PubMed  Google Scholar 

  • Andersen IS, Lindeman LC, Reiner AH, Ostrup O, Aanes H, Alestrom P, Collas P (2013) Epigenetic marking of the zebrafish developmental program. Curr Top Dev Biol 104:85–112

    Article  CAS  PubMed  Google Scholar 

  • Andersen IS, Reiner AH, Aanes H, Alestrom P, Collas P (2012) Developmental features of DNA methylation during activation of the embryonic zebrafish genome. Genome Biol 13(7):R65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JA, Lewellyn AL, Maller JL (1997) Ionizing radiation induces apoptosis and elevates cyclin A1-Cdk2 activity before but not after the midblastula transition in Xenopus. Mol Biol Cell 8(7):1195–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki F, Worrad DM, Schultz RM (1997) Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol 181(2):296–307

    Article  CAS  PubMed  Google Scholar 

  • Aoshima K, Inoue E, Sawa H, Okada Y (2015) Paternal H3K4 methylation is required for minor zygotic gene activation and early mouse embryonic development. EMBO Rep 16(7):803–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atherton-Fessler S, Liu F, Gabrielli B, Lee MS, Peng CY, Piwnica-Worms H (1994) Cell cycle regulation of the p34cdc2 inhibitory kinases. Mol Biol Cell 5(9):989–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Audic Y, Omilli F, Osborne HB (1997) Postfertilization deadenylation of mRNAs in Xenopus laevis embryos is sufficient to cause their degradation at the blastula stage. Mol Cell Biol 17(1):209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachvarova R, Davidson EH (1966) Nuclear activation at the onset of amphibian gastrulation. J Exp Zool 163(3):285–296

    Article  Google Scholar 

  • Bachvarova R, Davidson EH, Allfrey VG, Mirsky AE (1966) Activation of RNA synthesis associated with gastrulation. Proc Natl Acad Sci U S A 55(2):358–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baroux C, Autran D, Gillmor CS, Grimanelli D, Grossniklaus U (2008) The maternal to zygotic transition in animals and plants. Cold Spring Harb Symp Quant Biol 73:89–100

    Article  CAS  PubMed  Google Scholar 

  • Bartek J, Lukas J (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3(5):421–429

    Article  CAS  PubMed  Google Scholar 

  • Bell P, Scheer U (1999) Developmental changes in RNA polymerase I and TATA box-binding protein during early Xenopus embryogenesis. Exp Cell Res 248(1):122–135

    Article  CAS  PubMed  Google Scholar 

  • Biemar F, Zinzen R, Ronshaugen M, Sementchenko V, Manak JR, Levine MS (2005) Spatial regulation of microRNA gene expression in the Drosophila embryo. Proc Natl Acad Sci U S A 102(44):15907–15911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blythe SA, Cha SW, Tadjuidje E, Heasman J, Klein PS (2010) Beta-catenin primes organizer gene expression by recruiting a histone H3 arginine 8 methyltransferase, Prmt2. Dev Cell 19(2):220–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blythe SA, Wieschaus EF (2015a) Coordinating cell cycle remodeling with transcriptional activation at the Drosophila MBT. Curr Top Dev Biol 113:113–148

    Article  PubMed  Google Scholar 

  • Blythe SA, Wieschaus EF (2015b) Zygotic genome activation triggers the DNA replication checkpoint at the midblastula transition. Cell 160(6):1169–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdanovic O, van Heeringen SJ, Veenstra GJ (2012) The epigenome in early vertebrate development. Genesis 50(3):192–206

    Article  CAS  PubMed  Google Scholar 

  • Bouldin CM, Kimelman D (2014) Cdc25 and the importance of G2 control: insights from developmental biology. Cell Cycle 13(14):2165–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouniol C, Nguyen E, Debey P (1995) Endogenous transcription occurs at the 1-cell stage in the mouse embryo. Exp Cell Res 218(1):57–62

    Article  CAS  PubMed  Google Scholar 

  • Brown DD (2004) A tribute to the Xenopus laevis oocyte and egg. J Biol Chem 279(44):45291–45299

    Article  CAS  PubMed  Google Scholar 

  • Brown DD, Gurdon JB (1977) High-fidelity transcription of 5S DNA injected into Xenopus oocytes. Proc Natl Acad Sci U S A 74(5):2064–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown DD, Gurdon JB (1978) Cloned single repeating units of 5S DNA direct accurate transcription of 5S RNA when injected into Xenopus oocytes. Proc Natl Acad Sci U S A 75(6):2849–2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown EJ, Baltimore D (2000) ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 14(4):397–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bultman SJ, Gebuhr TC, Pan H, Svoboda P, Schultz RM, Magnuson T (2006) Maternal BRG1 regulates zygotic genome activation in the mouse. Genes Dev 20(13):1744–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns KH, Viveiros MM, Ren Y, Wang P, DeMayo FJ, Frail DE, Eppig JJ, Matzuk MM (2003) Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos. Science 300(5619):633–636

    Article  CAS  PubMed  Google Scholar 

  • Campbell SD, Sprenger F, Edgar BA, O'Farrell PH (1995) Drosophila Wee1 kinase rescues fission yeast from mitotic catastrophe and phosphorylates Drosophila Cdc2 in vitro. Mol Biol Cell 6(10):1333–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chini CC, Chen J (2003) Human claspin is required for replication checkpoint control. J Biol Chem 278(32):30057–30062

    Article  CAS  PubMed  Google Scholar 

  • Choi WY, Giraldez AJ, Schier AF (2007) Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science 318(5848):271–274

    Article  CAS  PubMed  Google Scholar 

  • Christians E, Campion E, Thompson EM, Renard JP (1995) Expression of the HSP 70.1 gene, a landmark of early zygotic activity in the mouse embryo, is restricted to the first burst of transcription. Development 121(1):113–122

    CAS  PubMed  Google Scholar 

  • Ciliberto A, Petrus MJ, Tyson JJ, Sible JC (2003) A kinetic model of the cyclin E/Cdk2 developmental timer in Xenopus laevis embryos. Biophys Chem 104(3):573–589

    Article  CAS  PubMed  Google Scholar 

  • Clute P, Masui Y (1992) Development of microtubule-dependence of the chromosome cycle at the midblastula transition in Xenopus laevis embryos. Dev Growth Differ 34:27–36

    Article  Google Scholar 

  • Clute P, Masui Y (1995) Regulation of the appearance of division asynchrony and microtubule-dependent chromosome cycles in Xenopus laevis embryos. Dev Biol 171(2):273–285

    Article  CAS  PubMed  Google Scholar 

  • Collart C, Allen GE, Bradshaw CR, Smith JC, Zegerman P (2013) Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science 341(6148):893–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collart C, Owens ND, Bhaw-Rosun L, Cooper B, De Domenico E, Patrushev I, Sesay AK, Smith JN, Smith JC, Gilchrist MJ (2014) High-resolution analysis of gene activity during the Xenopus mid-blastula transition. Development 141(9):1927–1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collart C, Ramis JM, Down TA, Smith JC (2009) Smicl is required for phosphorylation of RNA polymerase II and affects 3′-end processing of RNA at the midblastula transition in Xenopus. Development 136(20):3451–3461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conn CW, Lewellyn AL, Maller JL (2004) The DNA damage checkpoint in embryonic cell cycles is dependent on the DNA-to-cytoplasmic ratio. Dev Cell 7(2):275–281

    Article  CAS  PubMed  Google Scholar 

  • D'Angiolella V, Costanzo V, Gottesman ME, Avvedimento EV, Gautier J, Grieco D (2001) Role for cyclin-dependent kinase 2 in mitosis exit. Curr Biol 11:1221–1226

    Article  PubMed  Google Scholar 

  • Dalle Nogare DE, Pauerstein PT, Lane ME (2009) G2 acquisition by transcription-independent mechanism at the zebrafish midblastula transition. Dev Biol 326(1):131–142

    Article  CAS  PubMed  Google Scholar 

  • Dasso M, Newport JW (1990) Completion of DNA replication is monitored by a feedback system that controls the initiation of mitosis in vitro: studies in Xenopus. Cell 61(5):811–823

    Article  CAS  PubMed  Google Scholar 

  • Davidson EH (1986) Gene activity in early development, 3rd edn. Academic, Boston, MA

    Google Scholar 

  • De La Fuente R, Eppig JJ (2001) Transcriptional activity of the mouse oocyte genome: companion granulosa cells modulate transcription and chromatin remodeling. Dev Biol 229(1):224–236

    Article  CAS  Google Scholar 

  • De Renzis S, Elemento O, Tavazoie S, Wieschaus EF (2007) Unmasking activation of the zygotic genome using chromosomal deletions in the Drosophila embryo. PLoS Biol 5(5):e117

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Talia S, She R, Blythe SA, Lu X, Zhang QF, Wieschaus EF (2013) Posttranslational control of Cdc25 degradation terminates Drosophila’s early cell-cycle program. Curr Biol 23(2):127–132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dickey JS, Redon CE, Nakamura AJ, Baird BJ, Sedelnikova OA, Bonner WM (2009) H2AX: functional roles and potential applications. Chromosoma 118(6):683–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ducommun B, Brambilla P, Félix M, Franza BR, Karsenti E, Draetta G (1991) Cdc2 phosphorylation is required for its interaction with cyclin. EMBO J 10(11):3311–3319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunican DS, Ruzov A, Hackett JA, Meehan RR (2008) xDnmt1 regulates transcriptional silencing in pre-MBT Xenopus embryos independently of its catalytic function. Development 135(7):1295–1302

    Article  CAS  PubMed  Google Scholar 

  • Dworkin MB, Shrutkowski A, Dworkin-Rastl E (1985) Mobilization of specific maternal RNA species into polysomes after fertilization in Xenopus laevis. Proc Natl Acad Sci U S A 82(22):7636–7640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar BA, Datar SA (1996) Zygotic degradation of two maternal Cdc25 mRNAs terminates Drosophila’s early cell cycle program. Genes Dev 10(15):1966–1977

    Article  CAS  PubMed  Google Scholar 

  • Edgar BA, Kiehle CP, Schubiger G (1986) Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development. Cell 44(2):365–372

    Article  CAS  PubMed  Google Scholar 

  • Edgar BA, O'Farrell PH (1989) Genetic control of cell division patterns in the Drosophila embryo. Cell 57(1):177–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar BA, Schubiger G (1986) Parameters controlling transcriptional activation during early Drosophila development. Cell 44(6):871–877

    Article  CAS  PubMed  Google Scholar 

  • Edgar BA, Sprenger F, Duronio RJ, Leopold P, O'Farrell PH (1994) Distinct molecular mechanism regulate cell cycle timing at successive stages of Drosophila embryogenesis. Genes Dev 8(4):440–452

    Article  CAS  PubMed  Google Scholar 

  • Elledge SJ, Richman R, Hall FL, Williams RT, Lodgson N, Harper JW (1992) CDK2 encodes a 33-kDa cyclin A-associated protein kinase and is expressed before CDC2 in the cell cycle. Proc Natl Acad Sci U S A 89:2907–2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33:389–396

    Article  CAS  PubMed  Google Scholar 

  • Farrell JA, O'Farrell PH (2013) Mechanism and regulation of Cdc25/Twine protein destruction in embryonic cell-cycle remodeling. Curr Biol 23(2):118–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrell JA, O'Farrell PH (2014) From egg to gastrula: how the cell cycle is remodeled during the Drosophila mid-blastula transition. Annu Rev Genet 48:269–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrell JA, Shermoen AW, Yuan K, O'Farrell PH (2012) Embryonic onset of late replication requires Cdc25 down-regulation. Genes Dev 26(7):714–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faure S, Lee MA, Keller T, ten Dijke P, Whitman M (2000) Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development. Development 127(13):2917–2931

    CAS  PubMed  Google Scholar 

  • Finkielstein CV, Lewellyn AL, Maller JL (2001) The midblastula transition in Xenopus embryos activates multiple pathways to prevent apoptosis in response to DNA damage. Proc Natl Acad Sci U S A 98:1006–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flach G, Johnson MH, Braude PR, Taylor RA, Bolton VN (1982) The transition from maternal to embryonic control in the 2-cell mouse embryo. EMBO J 1(6):681–686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foygel K, Choi B, Jun S, Leong DE, Lee A, Wong CC, Zuo E, Eckart M, Reijo Pera RA, Wong WH, Yao MW (2008) A novel and critical role for Oct4 as a regulator of the maternal-embryonic transition. PLoS One 3(12):e4109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frankenberg SR, Frank D, Harland R, Johnson AD, Nichols J, Niwa H, Scholer HR, Tanaka E, Wylie C, Brickman JM (2014) The POU-er of gene nomenclature. Development 141(15):2921–2923

    Article  CAS  PubMed  Google Scholar 

  • Freeman M, Glover DM (1987) The gnu mutation of Drosophila causes inappropriate DNA synthesis in unfertilized and fertilized eggs. Genes Dev 1:924–930

    Article  CAS  PubMed  Google Scholar 

  • Freeman M, Nusslein-Volhard C, Glover DM (1986) The dissociation of nuclear and centrosomal division in gnu, a mutation causing giant nuclei in Drosophila. Cell 46(3):457–468

    Article  CAS  PubMed  Google Scholar 

  • Gawlinski P, Nikolay R, Goursot C, Lawo S, Chaurasia B, Herz HM, Kussler-Schneider Y, Ruppert T, Mayer M, Grosshans J (2007) The Drosophila mitotic inhibitor Fruhstart specifically binds to the hydrophobic patch of cyclins. EMBO Rep 8(5):490–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, Fell HP, Ferree S, George RD, Grogan T, James JJ, Maysuria M, Mitton JD, Oliveri P, Osborn JL, Peng T, Ratcliffe AL, Webster PJ, Davidson EH, Hood L, Dimitrov K (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 26(3):317–325

    Article  CAS  PubMed  Google Scholar 

  • Gerhart J (1980) Mechanisms regulating pattern formation in the amphibian egg and early embryo. In: Goldburger R (ed) Biological regulation and development, vol 2. Plenum Press, New York, pp 133–316

    Chapter  Google Scholar 

  • Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF (2006) Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312(5770):75–79

    Article  CAS  PubMed  Google Scholar 

  • Gotoh T, Kishimoto T, Sible JC (2011) Phosphorylation of Claspin is triggered by the nucleocytoplasmic ratio at the Xenopus laevis midblastula transition. Dev Biol 353(2):302–308

    Article  CAS  PubMed  Google Scholar 

  • Graham CF, Morgan RW (1966) Changes in the cell cycle during early amphibian development. Dev Biol 14(3):439–460

    Article  Google Scholar 

  • Graindorge A, Thuret R, Pollet N, Osborne HB, Audic Y (2006) Identification of post-transcriptionally regulated Xenopus tropicalis maternal mRNAs by microarray. Nucleic Acids Res 34(3):986–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groisman I, Jung MY, Sarkissian M, Cao Q, Richter JD (2002) Translational control of the embryonic cell cycle. Cell 109(4):473–483

    Article  CAS  PubMed  Google Scholar 

  • Grosshans J, Muller HA, Wieschaus E (2003) Control of cleavage cycles in Drosophila embryos by fruhstart. Dev Cell 5(2):285–294

    Article  CAS  PubMed  Google Scholar 

  • Grosshans J, Wieschaus E (2000) A genetic link between morphogenesis and cell division during formation of the ventral furrow in Drosophila. Cell 101:523–531

    Article  CAS  PubMed  Google Scholar 

  • Hamatani T, Carter MG, Sharov AA, Ko MS (2004) Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 6(1):117–131

    Article  CAS  PubMed  Google Scholar 

  • Harland RM, Laskey RA (1980) Regulated replication of DNA micro-injected into eggs of Xenopus laevis. Cell 21:761–771

    Article  CAS  PubMed  Google Scholar 

  • Harrison MM, Botchan MR, Cline TW (2010) Grainyhead and Zelda compete for binding to the promoters of the earliest-expressed Drosophila genes. Dev Biol 345(2):248–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison MM, Li XY, Kaplan T, Botchan MR, Eisen MB (2011) Zelda binding in the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-to-zygotic transition. PLoS Genet 7(10):e1002266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartl P, Gottesfeld J, Forbes DJ (1993) Mitotic repression of transcription in vitro. J Cell Biol 120(3):613–624

    Article  CAS  PubMed  Google Scholar 

  • Hartley RS, Rempel RE, Maller JL, Rebecca SH, Rem E (1996) In vivo regulation of the early embryonic cell cycle in Xenopus. Dev Biol 419:408–419

    Article  Google Scholar 

  • Hartley RS, Sible JC, Lewellyn AL, Maller JL (1997) A role for cyclin E/Cdk2 in the timing of the midblastula transition in Xenopus embryos. Dev Biol 188(2):312–321

    Article  CAS  PubMed  Google Scholar 

  • Harvey RP, Tabin CJ, Melton DA (1986) Embryonic expression and nuclear localization of Xenopus homeobox (Xhox) gene products. EMBO J 5:1237–1244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey SA, Sealy I, Kettleborough R, Fenyes F, White R, Stemple D, Smith JC (2013) Identification of the zebrafish maternal and paternal transcriptomes. Development 140(13):2703–2710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hensey C, Gautier J (1997) A developmental timer that regulates apoptosis at the onset of gastrulation. Mech Dev 69(1–2):183–195

    Article  CAS  PubMed  Google Scholar 

  • Hernandez N (1993) TBP, a universal eukaryotic transcription factor? Genes Dev 7(7B):1291–1308

    Article  CAS  PubMed  Google Scholar 

  • Heyn P, Kircher M, Dahl A, Kelso J, Tomancak P, Kalinka AT, Neugebauer KM (2014) The earliest transcribed zygotic genes are short, newly evolved, and different across species. Cell Rep 6(2):285–292

    Article  CAS  PubMed  Google Scholar 

  • Hilton E, Rex M, Old R (2003) VegT activation of the early zygotic gene Xnr5 requires lifting of Tcf-mediated repression in the Xenopus blastula. Mech Dev 120(10):1127–1138

    Article  CAS  PubMed  Google Scholar 

  • Howe JA, Newport JW (1996) A developmental timer regulates degradation of cyclin E1 at the midblastula transition during Xenopus embryogenesis. Proc Natl Acad Sci U S A 93(5):2060–2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikegami R, Zhang J, Rivera-Bennetts AK, Yager TD (1997) Activation of the metaphase checkpoint and an apoptosis programme in the early zebrafish embryo, by treatment with the spindle-destabilising agent nocodazole. Zygote 5(4):329–350

    Article  CAS  PubMed  Google Scholar 

  • Jevtic P, Levy DL (2015) Nuclear size scaling during Xenopus early development contributes to midblastula transition timing. Curr Biol 25(1):45–52

    Article  CAS  PubMed  Google Scholar 

  • Kadauke S, Blobel GA (2013) Mitotic bookmarking by transcription factors. Epigenetics Chromatin 6(1):6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kane DA, Kimmel CB (1993) The zebrafish midblastula transition. Development 119(2):447–456

    CAS  PubMed  Google Scholar 

  • Kang Q, Pomerening JR (2012) Punctuated cyclin synthesis drives early embryonic cell cycle oscillations. Mol Biol Cell 23(2):284–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kappas NC, Savage P, Chen KC, Walls AT, Sible JC (2000) Dissection of the XChk1 signaling pathway in Xenopus laevis embryos. Mol Biol Cell 11(9):3101–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karr TL, Ali Z, Drees B, Kornberg T (1985) The engrailed locus of D. melanogaster provides an essential zygotic function in precellular embryos. Cell 43(3 Pt 2):591–601

    Article  CAS  PubMed  Google Scholar 

  • Kerns SL, Schultz KM, Barry KA, Thorne TM, McGarry TJ (2012) Geminin is required for zygotic gene expression at the Xenopus mid-blastula transition. PLoS One 7(5):e38009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kigami D, Minami N, Takayama H, Imai H (2003) MuERV-L is one of the earliest transcribed genes in mouse one-cell embryos. Biol Reprod 68(2):651–654

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Li C, Maller JL (1999) A maternal form of the phosphatase Cdc25A regulates early embryonic cell cycles in Xenopus laevis. Dev Biol 212(2):381–391

    Article  CAS  PubMed  Google Scholar 

  • Kimelman D, Kirschner M, Scherson T (1987) The events of the midblastula transition in Xenopus are regulated by changes in the cell cycle. Cell 48(3):399–407

    Article  CAS  PubMed  Google Scholar 

  • King RW, Glotzer M, Kirschner MW (1996) Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates. Mol Biol Cell 7:1343–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayakawa Y, Kubota HY (1981) Temporal pattern of cleavage and the onset of gastrulation in amphibian embryos developed from eggs with the reduced cytoplasm. J Embryol Exp Morphol 62:83–94

    CAS  PubMed  Google Scholar 

  • Kraeussling M, Wagner TU, Schartl M (2011) Highly asynchronous and asymmetric cleavage divisions accompany early transcriptional activity in pre-blastula medaka embryos. PLoS One 6(7):e21741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krek W, Nigg E (1991) Differential phosphorylation of vertebrate p34cdc2 kinase at the G1/S and G2/M transitions of the cell cycle: identification of major phosphorylation sites. EMBO J 10(2):305–316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krieg PA, Melton DA (1985) Developmental regulation of a gastrula-specific gene injected into fertilized Xenopus eggs. EMBO J 4:3463–3471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumagai A, Dunphy WG (2000) Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol Cell 6:839–849

    Article  CAS  PubMed  Google Scholar 

  • Kumagai A, Dunphy WG (2003) Repeated phosphopeptide motifs in Claspin mediate the regulated binding of Chk1. Nat Cell Biol 5(2):161–165

    Article  CAS  PubMed  Google Scholar 

  • Kumagai A, Guo Z, Emami KH, Wang SX, Dunphy WG (1998) The Xenopus Chk1 protein kinase mediates a caffeine-sensitive pathway of checkpoint control in cell-free extracts. J Cell Biol 142(6):1559–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langley AR, Smith JC, Stemple DL, Harvey SA (2014) New insights into the maternal to zygotic transition. Development 141(20):3834–3841

    Article  CAS  PubMed  Google Scholar 

  • Lara-Gonzalez P, Westhorpe FG, Taylor SS (2012) The spindle assembly checkpoint. Curr Biol 22(22):R966–R980

    Article  CAS  PubMed  Google Scholar 

  • Latham KE, Schultz RM (2001) Embryonic genome activation. Front Biosci 6:D748–D759

    Article  CAS  PubMed  Google Scholar 

  • Latham KE, Solter D, Schultz RM (1992) Acquisition of a transcriptionally permissive state during the 1-cell stage of mouse embryogenesis. Dev Biol 149(2):457–462

    Article  CAS  PubMed  Google Scholar 

  • Lee HC, Choi HJ, Park TS, Lee SI, Kim YM, Rengaraj D, Nagai H, Sheng G, Lim JM, Han JY (2013a) Cleavage events and sperm dynamics in chick intrauterine embryos. PLoS One 8(11):e80631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MA, Heasman J, Whitman M (2001) Timing of endogenous activin-like signals and regional specification of the Xenopus embryo. Development 128(15):2939–2952

    CAS  PubMed  Google Scholar 

  • Lee MT, Bonneau AR, Giraldez AJ (2014) Zygotic genome activation during the maternal-to-zygotic transition. Annu Rev Cell Dev Biol 30:581–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MT, Bonneau AR, Takacs CM, Bazzini AA, DiVito KR, Fleming ES, Giraldez AJ (2013b) Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature 503(7476):360–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leichsenring M, Maes J, Mossner R, Driever W, Onichtchouk D (2013) Pou5f1 transcription factor controls zygotic gene activation in vertebrates. Science 341(6149):1005–1009

    Article  CAS  PubMed  Google Scholar 

  • Leung T, Bischof J, Soll I, Niessing D, Zhang D, Ma J, Jackle H, Driever W (2003) bozozok directly represses bmp2b transcription and mediates the earliest dorsoventral asymmetry of bmp2b expression in zebrafish. Development 130(16):3639–3649

    Article  CAS  PubMed  Google Scholar 

  • Li L, Lu X, Dean J (2013) The maternal to zygotic transition in mammals. Mol Aspects Med 34(5):919–938

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Zheng P, Dean J (2010) Maternal control of early mouse development. Development 137(6):859–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Tighe SW, Nicolet CM, Grove D, Levy S, Farmerie W, Viale A, Wright C, Schweitzer PA, Gao Y, Kim D, Boland J, Hicks B, Kim R, Chhangawala S, Jafari N, Raghavachari N, Gandara J, Garcia-Reyero N, Hendrickson C, Roberson D, Rosenfeld J, Smith T, Underwood JG, Wang M, Zumbo P, Baldwin DA, Grills GS, Mason CE (2014) Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study. Nat Biotechnol 32(9):915–925

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang HL, Nien CY, Liu HY, Metzstein MM, Kirov N, Rushlow C (2008) The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila. Nature 456(7220):400–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim JW, Hummert P, Mills JC, Kroll KL (2011) Geminin cooperates with Polycomb to restrain multi-lineage commitment in the early embryo. Development 138(1):33–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindeman LC, Andersen IS, Reiner AH, Li N, Aanes H, Ostrup O, Winata C, Mathavan S, Muller F, Alestrom P, Collas P (2011) Prepatterning of developmental gene expression by modified histones before zygotic genome activation. Dev Cell 21(6):993–1004

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, Luo G, Carattini-Rivera S, DeMayo F, Bradley A, Donehower LA, Elledge SJ (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 14(12):1448–1459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lott SE, Villalta JE, Schroth GP, Luo S, Tonkin LA, Eisen MB (2011) Noncanonical compensation of zygotic X transcription in early Drosophila melanogaster development revealed through single-embryo RNA-seq. PLoS Biol 9(2):e1000590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Li JM, Elemento O, Tavazoie S, Wieschaus EF (2009) Coupling of zygotic transcription to mitotic control at the Drosophila mid-blastula transition. Development 136(12):2101–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukas J, Bartek J (2009) DNA repair: new tales of an old tail. Nature 458(7238):581–583

    Article  CAS  PubMed  Google Scholar 

  • Lund E, Dahlberg JE (1992) Control of 4-8S RNA transcription at the midblastula transition in Xenopus laevis embryos. Genes Dev 6(6):1097–1106

    Article  CAS  PubMed  Google Scholar 

  • Lund E, Liu M, Hartley RS, Sheets MD, Dahlberg JE (2009) Deadenylation of maternal mRNAs mediated by miR-427 in Xenopus laevis embryos. RNA 15(12):2351–2363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luxardi G, Marchal L, Thome V, Kodjabachian L (2010) Distinct Xenopus Nodal ligands sequentially induce mesendoderm and control gastrulation movements in parallel to the Wnt/PCP pathway. Development 137(3):417–426

    Article  CAS  PubMed  Google Scholar 

  • Maller JL, Gross SD, Schwab MS, Finkielstein CV, Taieb FE, Qian YW (2001) Cell cycle transitions in early Xenopus development. Novartis Found Symp 237:58–73

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Salas E, Linney E, Hassell J, DePamphilis ML (1989) The need for enhancers in gene expression first appears during mouse development with formation of the zygotic nucleus. Genes Dev 3(10):1493–1506

    Article  CAS  PubMed  Google Scholar 

  • Mata J, Curado S, Ephrussi A, Rørth P (2000) Tribbles coordinates mitosis and morphogenesis in Drosophila by regulating string/CDC25 proteolysis. Cell 101:511–522

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Anzai M, Nakagata N, Takahashi A, Takahashi Y, Miyata K (1994) Onset of paternal gene activation in early mouse embryos fertilized with transgenic mouse sperm. Mol Reprod Dev 39(2):136–140

    Article  CAS  PubMed  Google Scholar 

  • McCleland ML, Farrell JA, O'Farrell PH (2009a) Influence of cyclin type and dose on mitotic entry and progression in the early Drosophila embryo. J Cell Biol 184(5):639–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCleland ML, O'Farrell PH (2008) RNAi of mitotic cyclins in Drosophila uncouples the nuclear and centrosome cycle. Curr Biol 18(4):245–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCleland ML, Shermoen AW, O'Farrell PH (2009b) DNA replication times the cell cycle and contributes to the mid-blastula transition in Drosophila embryos. J Cell Biol 187(1):7–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGarry TJ, Kirschner MW (1998) Geminin, an inhibitor of DNA replication, is degraded during mitosis. Cell 93(6):1043–1053

    Article  CAS  PubMed  Google Scholar 

  • McGrew LL, Dworkin-Rastl E, Dworkin MB, Richter JD (1989) Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev 3(6):803–815

    Article  CAS  PubMed  Google Scholar 

  • Mertz JE, Gurdon JB (1977) Purified DNAs are transcribed after microinjection into Xenopus oocytes. Proc Natl Acad Sci U S A 74(4):1502–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minshull J, Sun H, Tonks NK, Murray A (1994) A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extracts. Cell 79(3):475–486

    Article  CAS  PubMed  Google Scholar 

  • Misirlioglu M, Page GP, Sagirkaya H, Kaya A, Parrish JJ, First NL, Memili E (2006) Dynamics of global transcriptome in bovine matured oocytes and preimplantation embryos. Proc Natl Acad Sci U S A 103(50):18905–18910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mita I, Obata C (1984) Timing of early morphogenetic events in tetraploid starfish embryos. J Exp Zool 229:215–222

    Article  Google Scholar 

  • Murakami MS, Moody SA, Daar IO, Morrison DK (2004) Morphogenesis during Xenopus gastrulation requires Wee1-mediated inhibition of cell proliferation. Development 131(3):571–580

    Article  CAS  PubMed  Google Scholar 

  • Murakami MS, Vande Woude GF (1998) Analysis of the early embryonic cell cycles of Xenopus; regulation of cell cycle length by Xe-wee1 and Mos. Development 125(2):237–248

    CAS  PubMed  Google Scholar 

  • Murray AW (2004) Recycling the cell cycle: cyclins revisited. Cell 116(2):221–234

    Article  CAS  PubMed  Google Scholar 

  • Murray AW, Kirschner MW (1989) Cyclin synthesis drives the early embryonic cell cycle. Nature 339:275–280

    Article  CAS  PubMed  Google Scholar 

  • Nagai H, Sezaki M, Kakiguchi K, Nakaya Y, Lee HC, Ladher R, Sasanami T, Han JY, Yonemura S, Sheng G (2015) Cellular analysis of cleavage-stage chick embryos reveals hidden conservation in vertebrate early development. Development 142(7):1279–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakakura N, Miura T, Yamana K, Ito A, Shiokawa K (1987) Synthesis of heterogeneous mRNA-like RNA and low-molecular-weight RNA before the midblastula transition in embryos of Xenopus laevis. Dev Biol 123(2):421–429

    Article  CAS  PubMed  Google Scholar 

  • Newport J, Kirschner M (1982a) A major developmental transition in early Xenopus embryos: 1. Characterization and timing of cellular changes at the midblastula transition. Cell 30:675–686

    Article  CAS  PubMed  Google Scholar 

  • Newport J, Kirschner M (1982b) A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30(3):687–696

    Article  CAS  PubMed  Google Scholar 

  • Newport JW, Kirschner MW (1984) Regulation of the cell cycle during early Xenopus development. Cell 37(3):731–742

    Article  CAS  PubMed  Google Scholar 

  • Olszanska B, Kludkiewicz B, Lassota Z (1984) Transcription and polyadenylation processes during early development of quail embryo. J Embryol Exp Morphol 79:11–24

    CAS  PubMed  Google Scholar 

  • Oppenheimer JM (1936) Transplantation experiments on developing teleosts (Fundulus and Perca). J Exp Zool 72:409–437

    Article  Google Scholar 

  • Palancade B, Bellier S, Almouzni G, Bensaude O (2001) Incomplete RNA polymerase II phosphorylation in Xenopus laevis early embryos. J Cell Sci 114(Pt 13):2483–2489

    CAS  PubMed  Google Scholar 

  • Pan H, Schultz RM (2011) Sox2 modulates reprogramming of gene expression in two-cell mouse embryos. Biol Reprod 85(2):409–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paranjpe SS, Jacobi UG, van Heeringen SJ, Veenstra GJ (2013) A genome-wide survey of maternal and embryonic transcripts during Xenopus tropicalis development. BMC Genomics 14:762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paranjpe SS, Veenstra GJ (2015) Establishing pluripotency in early development. Biochim Biophys Acta 1849(6):626–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SJ, Komata M, Inoue F, Yamada K, Nakai K, Ohsugi M, Shirahige K (2013) Inferring the choreography of parental genomes during fertilization from ultralarge-scale whole-transcriptome analysis. Genes Dev 27(24):2736–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil M, Pabla N, Dong Z (2013) Checkpoint kinase 1 in DNA damage response and cell cycle regulation. Cell Mol Life Sci 70(21):4009–4021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL, Levin JZ, Fan L, Sandelin A, Rinn JL, Regev A, Schier AF (2012) Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res 22(3):577–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng A, Lewellyn AL, Maller JL (2008) DNA damage signaling in early Xenopus embryos. Cell Cycle 7(1):3–6

    Article  CAS  PubMed  Google Scholar 

  • Petrus MJ, Wilhelm DE, Murakami M, Kappas NC, Carter AD, Wroble BN, Sible JC (2004) Altered expression of Chk1 disrupts cell cycle remodeling at the midblastula transition in Xenopus laevis embryos. Cell Cycle 3(2):212–217

    Article  CAS  PubMed  Google Scholar 

  • Pines J (2011) Cubism and the cell cycle: the many faces of the APC/C. Nat Rev Mol Cell Biol 12(7):427–438

    Article  CAS  PubMed  Google Scholar 

  • Plasschaert RN, Bartolomei MS (2014) Genomic imprinting in development, growth, behavior and stem cells. Development 141(9):1805–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pomerening JR, Sontag ED, Ferrell JE (2003) Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat Cell Biol 5:346–351

    Article  CAS  PubMed  Google Scholar 

  • Posfai E, Kunzmann R, Brochard V, Salvaing J, Cabuy E, Roloff TC, Liu Z, Tardat M, van Lohuizen M, Vidal M, Beaujean N, Peters AH (2012) Polycomb function during oogenesis is required for mouse embryonic development. Genes Dev 26(9):920–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potok ME, Nix DA, Parnell TJ, Cairns BR (2013) Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell 153(4):759–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prioleau MN, Huet J, Sentenac A, Mechali M (1994) Competition between chromatin and transcription complex assembly regulates gene expression during early development. Cell 77(3):439–449

    Article  CAS  PubMed  Google Scholar 

  • Quinn LM, Herr A, McGarry TJ, Richardson H (2001) The Drosophila Geminin homolog: roles for Geminin in limiting DNA replication, in anaphase and in neurogenesis. Genes Dev 15(20):2741–2754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ram PT, Schultz RM (1993) Reporter gene expression in G2 of the 1-cell mouse embryo. Dev Biol 156(2):552–556

    Article  CAS  PubMed  Google Scholar 

  • Rempel RE, Sleight SB, Maller JL (1995) Maternal Xenopus Cdk2-cyclin E complexes function during meiotic and early embryonic cell cycles that lack a G1 phase. J Biol Chem 270:6843–6855

    Article  CAS  PubMed  Google Scholar 

  • Rivera RM, Ross JW (2013) Epigenetics in fertilization and preimplantation embryo development. Prog Biophys Mol Biol 113(3):423–432

    Article  PubMed  Google Scholar 

  • Roeder RG (1974a) Multiple forms of deoxyribonucleic acid-dependent ribonucleic acid polymerase in Xenopus laevis. Isolation and partial characterization. J Biol Chem 249(1):241–248

    CAS  PubMed  Google Scholar 

  • Roeder RG (1974b) Multiple forms of deoxyribonucleic acid-dependent ribonucleic acid polymerase in Xenopus laevis. Levels of activity during oocyte and embryonic development. J Biol Chem 249(1):249–256

    CAS  PubMed  Google Scholar 

  • Rosa A, Spagnoli FM, Brivanlou AH (2009) The miR-430/427/302 family controls mesendodermal fate specification via species-specific target selection. Dev Cell 16(4):517–527

    Article  CAS  PubMed  Google Scholar 

  • Rothe M, Pehl M, Taubert H, Jackle H (1992) Loss of gene function through rapid mitotic cycles in the Drosophila embryo. Nature 359(6391):156–159

    Article  CAS  PubMed  Google Scholar 

  • Royou A, McCusker D, Kellogg DR, Sullivan W (2008) Grapes(Chk1) prevents nuclear CDK1 activation by delaying cyclin B nuclear accumulation. J Cell Biol 183(1):63–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruzov A, Dunican DS, Prokhortchouk A, Pennings S, Stancheva I, Prokhortchouk E, Meehan RR (2004) Kaiso is a genome-wide repressor of transcription that is essential for amphibian development. Development 131:6185–6194

    Article  CAS  PubMed  Google Scholar 

  • Ruzov A, Savitskaya E, Hackett JA, Reddington JP, Prokhortchouk A, Madej MJ, Chekanov N, Li M, Dunican DS, Prokhortchouk E, Pennings S, Meehan RR (2009) The non-methylated DNA-binding function of Kaiso is not required in early Xenopus laevis development. Development 136(5):729–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sander K, Faessler PE (2001) Introducing the Spemann-Mangold organizer: experiments and insights that generated a key concept in developmental biology. Int J Dev Biol 45(1):1–11

    CAS  PubMed  Google Scholar 

  • Sawicki JA, Magnuson T, Epstein CJ (1981) Evidence for expression of the paternal genome in the two-cell mouse embryo. Nature 294(5840):450–451

    Article  CAS  PubMed  Google Scholar 

  • Schier AF (2001) Axis formation and patterning in zebrafish. Curr Opin Genet Dev 11(4):393–404

    Article  CAS  PubMed  Google Scholar 

  • Schier AF, Talbot WS (2005) Molecular genetics of axis formation in zebrafish. Annu Rev Genet 39:561–613

    Article  CAS  PubMed  Google Scholar 

  • Schohl A, Fagotto F (2002) Beta-catenin, MAPK and Smad signaling during early Xenopus development. Development 129(1):37–52

    CAS  PubMed  Google Scholar 

  • SEQC/MAQC-III C (2014) A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat Biotechnol 32(9):903–914

    Article  CAS  Google Scholar 

  • Sha W, Moore J, Chen K, Lassaletta AD, Yi C-S, Tyson JJ, Sible JC (2003) Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc Natl Acad Sci U S A 100:975–980

    Article  CAS  PubMed  Google Scholar 

  • Shamanski FL, Orr-Weaver TL (1991) The Drosophila plutonium and pan gu genes regulate entry into S phase at fertilization. Cell 66:1289–1300

    Article  CAS  PubMed  Google Scholar 

  • Shechter D, Nicklay JJ, Chitta RK, Shabanowitz J, Hunt DF, Allis CD (2009) Analysis of histones in Xenopus laevis: I. A distinct index of enriched variants and modifications exists in each cell type and is remodeled during developmental transitions. J Biol Chem 284(2):1064–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shermoen AW, O'Farrell PH (1991) Progression of the cell cycle through mitosis leads to abortion of nascent transcripts. Cell 67(2):303–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimuta K, Nakajo N, Uto K, Hayano Y, Okazaki K, Sagata N (2002) Chk1 is activated transiently and targets Cdc25A for degradation at the Xenopus midblastula transition. EMBO J 21(14):3694–3703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiokawa K, Misumi Y, Tashiro K, Nakakura N, Yamana K, Oh-uchida M (1989) Changes in the patterns of RNA synthesis in early embryogenesis of Xenopus laevis. Cell Differ Dev 28(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Sible JC, Anderson JA, Lewellyn AL, Maller JL (1997) Zygotic transcription is required to block a maternal program of apoptosis in Xenopus embryos. Dev Biol 189(2):335–346

    Article  CAS  PubMed  Google Scholar 

  • Sibon OC, Laurencon A, Hawley R, Theurkauf WE (1999) The Drosophila ATM homologue Mei-41 has an essential checkpoint function at the midblastula transition. Curr Biol 9(6):302–312

    Article  CAS  PubMed  Google Scholar 

  • Sibon OC, Stevenson VA, Theurkauf WE (1997) DNA-replication checkpoint control at the Drosophila midblastula transition. Nature 388(6637):93–97

    Article  CAS  PubMed  Google Scholar 

  • Signoret J, Lefresne J (1971) Contribution a l'etude de la segmentation de l'oef d'axolotl: I. Definition de la transition blastuleenne. Ann Embryol Morphogen 4:113–123

    Google Scholar 

  • Sirard MA, Dufort I, Vallee M, Massicotte L, Gravel C, Reghenas H, Watson AJ, King WA, Robert C (2005) Potential and limitations of bovine-specific arrays for the analysis of mRNA levels in early development: preliminary analysis using a bovine embryonic array. Reprod Fertil Dev 17(1–2):47–57

    Article  CAS  PubMed  Google Scholar 

  • Sirbu BM, Cortez D (2013) DNA damage response: three levels of DNA repair regulation. Cold Spring Harb Perspect Biol 5(8):a012724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skaar JR, Pagano M (2009) Control of cell growth by the SCF and APC/C ubiquitin ligases. Curr Opin Cell Biol 21(6):816–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skirkanich J, Luxardi G, Yang J, Kodjabachian L, Klein PS (2011) An essential role for transcription before the MBT in Xenopus laevis. Dev Biol 357(2):478–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spradling AC (1999) ORC binding, gene amplification, and the nature of metazoan replication origins. Genes Dev 13(20):2619–2623

    Article  CAS  PubMed  Google Scholar 

  • Stack JH, Newport JW (1997) Developmentally regulated activation of apoptosis early in Xenopus gastrulation results in cyclin A degradation during interphase of the cell cycle. Development 124(16):3185–3195

    CAS  PubMed  Google Scholar 

  • Stancheva I, Meehan RR (2000) Transient depletion of xDnmt1 leads to premature gene activation in Xenopus embryos. Genes Dev 14(3):313–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strausfeld UP, Howell M, Descombes P, Chevalier S, Rempel RE, Adamczewski J, Maller JL, Hunt T, Blow JJ (1996) Both cyclin A and cyclin E have S-phase promoting (SPF) activity in Xenopus egg extracts. J Cell Sci 109(Pt 6):1555–1563

    CAS  PubMed  Google Scholar 

  • Sung HW, Spangenberg S, Vogt N, Grosshans J (2013) Number of nuclear divisions in the Drosophila blastoderm controlled by onset of zygotic transcription. Curr Biol 23(2):133–138

    Article  CAS  PubMed  Google Scholar 

  • Swinburne IA, Silver PA (2008) Intron delays and transcriptional timing during development. Dev Cell 14(3):324–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tadros W, Lipshitz HD (2005) Setting the stage for development: mRNA translation and stability during oocyte maturation and egg activation in Drosophila. Dev Dyn 232(3):593–608

    Article  CAS  PubMed  Google Scholar 

  • Tadros W, Lipshitz HD (2009) The maternal-to-zygotic transition: a play in two acts. Development 136(18):3033–3042

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Onuma Y, Yokota C, Westmoreland JJ, Asashima M, Wright CV (2006) Nodal-related gene Xnr5 is amplified in the Xenopus genome. Genesis 44(7):309–321

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Yokota C, Takano K, Tanegashima K, Onuma Y, Goto J, Asashima M (2000) Two novel nodal-related genes initiate early inductive events in Xenopus Nieuwkoop center. Development 127(24):5319–5329

    CAS  PubMed  Google Scholar 

  • Tan MH, Au KF, Yablonovitch AL, Wills AE, Chuang J, Baker JC, Wong WH, Li JB (2013) RNA sequencing reveals a diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. Genome Res 23(1):201–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tani S, Kusakabe R, Naruse K, Sakamoto H, Inoue K (2010) Genomic organization and embryonic expression of miR-430 in medaka (Oryzias latipes): insights into the post-transcriptional gene regulation in early development. Gene 449(1–2):41–49

    Article  CAS  PubMed  Google Scholar 

  • Telford NA, Watson AJ, Schultz GA (1990) Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol Reprod Dev 26(1):90–100

    Article  CAS  PubMed  Google Scholar 

  • ten Bosch JR, Benavides JA, Cline TW (2006) The TAGteam DNA motif controls the timing of Drosophila pre-blastoderm transcription. Development 133(10):1967–1977

    Article  PubMed  CAS  Google Scholar 

  • Tesarik J, Kopecny V, Plachot M, Mandelbaum J (1988) Early morphological signs of embryonic genome expression in human preimplantation development as revealed by quantitative electron microscopy. Dev Biol 128(1):15–20

    Article  CAS  PubMed  Google Scholar 

  • Tischer T, Hormanseder E, Mayer TU (2012) The APC/C inhibitor XErp1/Emi2 is essential for Xenopus early embryonic divisions. Science 338(6106):520–524

    Article  CAS  PubMed  Google Scholar 

  • Torres-Padilla ME, Zernicka-Goetz M (2006) Role of TIF1alpha as a modulator of embryonic transcription in the mouse zygote. J Cell Biol 174(3):329–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyama R, Rebbert ML, Dey A, Ozato K, Dawid IB (2008) Brd4 associates with mitotic chromosomes throughout early zebrafish embryogenesis. Dev Dyn 237(6):1636–1644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyoda T, Wolffe AP (1992) In vitro transcription by RNA polymerase II in extracts of Xenopus oocytes, eggs, and somatic cells. Anal Biochem 203(2):340–347

    Article  CAS  PubMed  Google Scholar 

  • Tung JJ, Hansen DV, Ban KH, Loktev AV, Summers MK, Adler JR 3rd, Jackson PK (2005) A role for the anaphase-promoting complex inhibitor Emi2/XErp1, a homolog of early mitotic inhibitor 1, in cytostatic factor arrest of Xenopus eggs. Proc Natl Acad Sci U S A 102(12):4318–4323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ubersax JA, Woodbury EL, Quang PN, Paraz M, Blethrow JD, Shah K, Shokat KM, Morgan DO (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425(6960):859–864

    Article  CAS  PubMed  Google Scholar 

  • Uto K, Inoue D, Shimuta K, Nakajo N, Sagata N (2004) Chk1, but not Chk2, inhibits Cdc25 phosphatases by a novel common mechanism. EMBO J 23(16):3386–3396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallee M, Aiba K, Piao Y, Palin MF, Ko MS, Sirard MA (2008) Comparative analysis of oocyte transcript profiles reveals a high degree of conservation among species. Reproduction 135(4):439–448

    Article  CAS  PubMed  Google Scholar 

  • Vastenhouw NL, Zhang Y, Woods IG, Imam F, Regev A, Liu XS, Rinn J, Schier AF (2010) Chromatin signature of embryonic pluripotency is established during genome activation. Nature 464(7290):922–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veenstra GJ (2002) Early embryonic gene transcription in Xenopus. Adv Dev Biol Biochem 12:85–105

    Article  CAS  Google Scholar 

  • Veenstra GJ, Destree OH, Wolffe AP (1999) Translation of maternal TATA-binding protein mRNA potentiates basal but not activated transcription in Xenopus embryos at the midblastula transition. Mol Cell Biol 19(12):7972–7982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vesterlund L, Jiao H, Unneberg P, Hovatta O, Kere J (2011) The zebrafish transcriptome during early development. BMC Dev Biol 11:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan LB, Pan H, Hannenhalli S, Cheng Y, Ma J, Fedoriw A, Lobanenkov V, Latham KE, Schultz RM, Bartolomei MS (2008) Maternal depletion of CTCF reveals multiple functions during oocyte and preimplantation embryo development. Development 135(16):2729–2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang QT, Piotrowska K, Ciemerych MA, Milenkovic L, Scott MP, Davis RW, Zernicka-Goetz M (2004) A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev Cell 6(1):133–144

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Takeda A, Mise K, Okuno T, Suzuki T, Minami N, Imai H (2005) Stage-specific expression of microRNAs during Xenopus development. FEBS Lett 579(2):318–324

    Article  CAS  PubMed  Google Scholar 

  • Weaver JR, Susiarjo M, Bartolomei MS (2009) Imprinting and epigenetic changes in the early embryo. Mamm Genome 20(9–10):532–543

    Article  PubMed  Google Scholar 

  • Whitworth KM, Agca C, Kim JG, Patel RV, Springer GK, Bivens NJ, Forrester LJ, Mathialagan N, Green JA, Prather RS (2005) Transcriptional profiling of pig embryogenesis by using a 15-K member unigene set specific for pig reproductive tissues and embryos. Biol Reprod 72(6):1437–1451

    Article  CAS  PubMed  Google Scholar 

  • Wiekowski M, Miranda M, DePamphilis ML (1993) Requirements for promoter activity in mouse oocytes and embryos distinguish paternal pronuclei from maternal and zygotic nuclei. Dev Biol 159(1):366–378

    Article  PubMed  Google Scholar 

  • Wolffe AP (1989) Transcriptional activation of Xenopus class III genes in chromatin isolated from sperm and somatic nuclei. Nucleic Acids Res 17(2):767–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolffe AP, Brown DD (1987) Differential 5S RNA gene expression in vitro. Cell 51(5):733–740

    Article  CAS  PubMed  Google Scholar 

  • Woodland HR, Gurdon JB (1969) RNA synthesis in an amphibian nuclear-transplant hybrid. Dev Biol 20(2):89–104

    Article  CAS  PubMed  Google Scholar 

  • Wormington WM, Brown DD (1983) Onset of 5S RNA gene regulation during Xenopus embryogenesis. Dev Biol 99(1):248–257

    Article  CAS  PubMed  Google Scholar 

  • Wroble BN, Finkielstein CV, Sible JC (2007) Wee1 kinase alters cyclin E/Cdk2 and promotes apoptosis during the early embryonic development of Xenopus laevis. BMC Dev Biol 7:119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu M, Gerhart JC (1980) Partial purification and characterization of the maturation-promoting factor from eggs of Xenopus laevis. Dev Biol 79(2):465–477

    Article  CAS  PubMed  Google Scholar 

  • Xanthos JB, Kofron M, Wylie C, Heasman J (2001) Maternal VegT is the initiator of a molecular network specifying endoderm in Xenopus laevis. Development 128(2):167–180

    CAS  PubMed  Google Scholar 

  • Xu C, Fan ZP, Muller P, Fogley R, DiBiase A, Trompouki E, Unternaehrer J, Xiong F, Torregroza I, Evans T, Megason SG, Daley GQ, Schier AF, Young RA, Zon LI (2012) Nanog-like regulates endoderm formation through the Mxtx2-Nodal pathway. Dev Cell 22(3):625–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue Z, Huang K, Cai C, Cai L, Jiang CY, Feng Y, Liu Z, Zeng Q, Cheng L, Sun YE, Liu JY, Horvath S, Fan G (2013) Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500(7464):593–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanai I, Peshkin L, Jorgensen P, Kirschner MW (2011) Mapping gene expression in two Xenopus species: evolutionary constraints and developmental flexibility. Dev Cell 20(4):483–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Tan C, Darken RS, Wilson PA, Klein PS (2002) Beta-catenin/Tcf-regulated transcription prior to the midblastula transition. Development 129(24):5743–5752

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Ferrell JE Jr (2013) The Cdk1-APC/C cell cycle oscillator circuit functions as a time-delayed, ultrasensitive switch. Nat Cell Biol 15(5):519–525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yasuda GK, Baker J, Schubiger G (1991) Temporal regulation of gene expression in the blastoderm Drosophila embryo. Genes Dev 5(10):1800–1812

    Article  CAS  PubMed  Google Scholar 

  • Yasuda GK, Schubiger G (1992) Temporal regulation in the early embryo: is MBT too good to be true? Trends Genet 8(4):124–127

    Article  CAS  PubMed  Google Scholar 

  • Zamir E, Kam Z, Yarden A (1997) Transcription-dependent induction of G1 phase during the zebrafish midblastula transition. Mol Cell Biol 17(2):529–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng F, Baldwin DA, Schultz RM (2004) Transcript profiling during preimplantation mouse development. Dev Biol 272(2):483–496

    Article  CAS  PubMed  Google Scholar 

  • Zeng F, Schultz RM (2005) RNA transcript profiling during zygotic gene activation in the preimplantation mouse embryo. Dev Biol 283(1):40–57

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Kothari P, Lampson MA (2015) Spindle assembly checkpoint acquisition at the mid-blastula transition. PLoS One 10(3):e0119285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang M, Kothari P, Mullins M, Lampson MA (2014) Regulation of zygotic genome activation and DNA damage checkpoint acquisition at the mid-blastula transition. Cell Cycle 13(24):3828–3838

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Shelby Blythe, Jing Yang, Daniel Kessler, Mary Mullins, Karla Neugebauer, Patricia Heyn, Steven Harvey, and Derek Stemple for helpful discussions. We thank Jing Yang for sharing unpublished data and Karla Neugebauer and Patricia Heyn for permission to reprint their published data. We are indebted to authoritative reviews from many authors, as cited above, and thank Shelby Blythe and Eric Wieschaus for sharing their review prior to publication. M.Z. was supported in part by the Developmental Biology Training Grant at Penn (T32HD007516). J.S. was supported in part by the Cell and Molecular Biology Training Grant at Penn (T32-GM07229). M.A.L. was supported by the NIH (R01GM083988) and a Searle Scholar award. P.S.K. was supported by the NIH (R01HL110806 and R01MH100923) and the Institute for Regenerative Medicine at the University of Pennsylvania.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael A. Lampson or Peter S. Klein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, M., Skirkanich, J., Lampson, M.A., Klein, P.S. (2017). Cell Cycle Remodeling and Zygotic Gene Activation at the Midblastula Transition. In: Pelegri, F., Danilchik, M., Sutherland, A. (eds) Vertebrate Development. Advances in Experimental Medicine and Biology, vol 953. Springer, Cham. https://doi.org/10.1007/978-3-319-46095-6_9

Download citation

Publish with us

Policies and ethics