Skip to main content

Part of the book series: Progress in the Chemistry of Organic Natural Products ((POGRCHEM,volume 104))

Abstract

The natural products synthesized by organisms that were living a long time ago gave rise to their molecular fossils. These can consist of either the original unchanged compounds or they may undergo peripheral transformations in which their skeletons remain intact. In cases when molecular fossils can be traced to their organismic source, they are termed “geological biomarkers”.

This contribution describes apolar and polar molecular fossils and, in particular biomarkers, along the lines usually followed in organic chemistry textbooks, and points to their bioprecursors when available. Thus, the apolar compounds are divided in linear and branched alkanes followed by alicyclic compounds and aromatic and heterocyclic molecules, and, in particular, the geoporphyrins. The polar molecular fossils contain as functional groups or constituent units ethers, alcohols, phenols, carbonyl groups, flavonoids, quinones, and acids, or are polymers like kerogen, amber, melanin, proteins, or nucleic acids. The final sections discuss the methodology used and the fundamental processes encountered by the biomolecules described, including diagenesis, catagenesis, and metagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dictionary of natural products at: http://dnp.chemnetbase.com

  2. Treibs A (1936) Chlorophyll - und Häminderivate in organischen Mineralstoffen. Angew Chem 49:682

    CAS  Google Scholar 

  3. Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide, vol 1 and 2, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  4. Gaines SM, Eglinton G, Rullkötter J (2009) Echoes of life. What fossil molecules reveal about earth history. Oxford University Press, Oxford, UK

    Google Scholar 

  5. Smith HM (1967) Hydrocarbon constituents of petroleum and some possible lipid precursors. J Am Oil Chem Soc 44:680

    CAS  Google Scholar 

  6. Ni Y, Dai J (2009) Geochemical characteristics of abiogenic alkane gases. Petrol Sci 6:327

    CAS  Google Scholar 

  7. Clark RC Jr, Blumer M (1967) Distribution of n-paraffins in marine organisms and sediment. Limnol Oceanogr 12:79

    CAS  Google Scholar 

  8. Rushdi AI, Simoneit BRT (2001) Lipid formation by aqueous Fischer–Tropsch-type synthesis over a temperature range of 100 to 400°C. Orig Life Evol Biosph 31:103

    PubMed  CAS  Google Scholar 

  9. Tissot BP, Welte DH (1984) Petroleum formation and occurrence, 2nd edn. Springer, New York

    Google Scholar 

  10. Jacobson SR, Hatch JR, Teerman SC, Askin RA (1988) Middle Ordovician organic matter assemblages and their effect on Ordovician-derived oils. Am Assoc Petrol Geol Bull 72:1090

    CAS  Google Scholar 

  11. Moldowan JM, Seifert WK, Gallegos EJ (1985) Relationship between petroleum composition and depositional environment of petroleum source rocks. Am Assoc Petrol Geol Bull 69:1255

    CAS  Google Scholar 

  12. Bourbonniere RA, Meyers PA (1996) Sedimentary geolipid records of historical change in the watersheds and productivities of Lakes Ontario and Erie. Limnol Oceanogr 41:352

    Google Scholar 

  13. Bush RT, McInerney FA (2013) Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochim Cosmochim Acta 117:161

    CAS  Google Scholar 

  14. Knoche H, Ourisson G (1967) Organic compounds in fossil plants (Equisetum; horsetails). Angew Chem Int Ed 6:1085

    CAS  Google Scholar 

  15. Rieley G, Collier RJ, Jones DM, Eglinton G, Eakin PA, Fallick E (1991) Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds. Nature 352:425

    CAS  Google Scholar 

  16. Klomp UC (1986) The chemical structure of a pronounced series of iso-alkanes in South Oman crudes. Org Geochem 10:807

    CAS  Google Scholar 

  17. Elvert M, Suess E, Whiticar MJ (1999) Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften 86:295

    CAS  Google Scholar 

  18. Thiel V, Jenisch A, Wörheide G, Löwenberg A, Reitner J, Michaelis W (1999) Mid-chain branched alkanoic acids from “living fossil” demosponges: a link to ancient sedimentary lipids? Org Geochem 30:1

    CAS  Google Scholar 

  19. Shiea J, Brassell SC, Ward DM (1990) Mid-chain branched mono- and dimethyl alkanes in hot spring cyanobacterial mats: a direct biogenic source for branched alkanes in ancient sediments? Org Geochem 15:223

    CAS  Google Scholar 

  20. Robinson N, Eglinton G (1990) Lipid chemistry of Icelandic hot spring microbial mats. Org Geochem 15:291

    CAS  Google Scholar 

  21. Höld IM, Schouten S, Jellema J, Sininghe Damsté JS (1999) Origin of free and bound mid-chain methyl alkanes in oils, bitumens and kerogens of the marine, Infracambrian Huqf Formation (Oman). Org Geochem 30:1411

    Google Scholar 

  22. Audino M, Grice K, Alexander R, Boreham CJ, Kagi RI (2001) Unusual distribution of monomethylalkanes in Botryococcus braunii-rich samples: origin and significance. Geochim Cosmochim Acta 65:1995

    CAS  Google Scholar 

  23. Warton B, Alexander R, Kagi RI (1997) Identification of some single branched alkanes in crude oils. Org Geochem 27:465

    CAS  Google Scholar 

  24. Kenig F, Simons D-JH, Crich D, Cowen JP, Ventura GT, Rehbein-Khalily T, Brown TC, Anderson KB (2003) Branched aliphatic alkanes with quaternary substituted carbon atoms in modern and ancient geological samples. Proc Natl Acad Sci USA 100:12554

    PubMed  CAS  Google Scholar 

  25. Powell TG (1988) Pristane/phytane ratio as environmental indicator. Nature 333:604

    Google Scholar 

  26. Goossens H, de Leeuw JW, Schenck PA, Brassell SC (1984) Tocopherols as likely precursors of pristane in ancient sediments and crude oils. Nature 312:440

    CAS  Google Scholar 

  27. Booth VH (1963) α-Tocopherol, its co-occurrence with chlorophyll in chloroplasts. Phytochemistry 2:421

    CAS  Google Scholar 

  28. Blumer M, Mullin MM, Thomas DW (1964) Pristane in the marine environment. Helgoländer Wiss Meeresuntersuch 10:187

    CAS  Google Scholar 

  29. Illich HA (1983) Pristane, phytane, and lower molecular weight isoprenoid distributions in oil. Am Assoc Petrol Geol Bull 67:385

    CAS  Google Scholar 

  30. Waples DW, Haug P, Welte DH (1974) Occurrence of a regular C25 isoprenoid hydrocarbon in Tertiary sediments representing a lagoonal-type, saline environment. Geochim Cosmochim Acta 38:381

    CAS  Google Scholar 

  31. Grice K, Schouten S, Nissenbaum A, Charrach J, Sininghe Damsté JS (1998) Isotopically heavy carbon in the C21 to C25 regular isoprenoids in halite-rich deposits from the Sdom formation, Dead Sea Basin, Israel. Org Geochem 28:349

    CAS  Google Scholar 

  32. Petrov AA, Vorobyova NS, Zemskova ZK (1990) Isoprenoid alkanes with irregular “head-to-head” linkages. Org Geochem 16:1001

    CAS  Google Scholar 

  33. Barber CJ, Grice K, Bastow TB, Alexander R, Kagi R (2001) The identification of crocetane in Australian crude oils. Org Geochem 32:943

    CAS  Google Scholar 

  34. Schwartz H, Sample J, Weberling KD, Minisini D, Moore JC (2003) An ancient linked fluid migration system: cold-seep deposits and sandstone intrusions in the Panoche Hills, California, USA. Geo-Mar Lett 23:340

    CAS  Google Scholar 

  35. Vink A, Schouten S, Sephton S, Sininghe Damsté JS (1998) A newly discovered norisoprenoid, 2,6,15,19-tetramethylicosane, in Cretaceous black shales. Geochim Cosmochim Acta 62:965

    CAS  Google Scholar 

  36. Gardner PM, Whitehead EV (1972) The isolation of squalane from Nigerian petroleum. Geochim Cosmochim Acta 36:259

    CAS  Google Scholar 

  37. Brassell SC, Wardroper AMK, Thompson ID, Maxwell JR, Eglinton G (1981) Specific acyclic isoprenoids as biological markers of methanogenic bacteria in marine sediments. Nature 290:693

    PubMed  CAS  Google Scholar 

  38. Summons RE, Metzger P, Largeau C, Murray AP, Hope JM (2002) Polymethylsqualanes from Botryococcus braunii in lacustrine sediments and oils. Org Geochem 33:99

    CAS  Google Scholar 

  39. Freeman KH, Hayes JM, Trendel J-M, Albrecht P (1990) Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons. Nature 343:254

    PubMed  CAS  Google Scholar 

  40. Yon DA, Maxwell JR, Ryback G (1982) 2,6,10-Trimethyl-7-(3-methylbutyl)-dodecane, a novel sedimentary biological marker compound. Tetrahedron Lett 23:2143

    CAS  Google Scholar 

  41. Belt ST, Allard WG, Massé G, Robert J-M, Rowland SJ (2000) Highly branched isoprenoids (HBIs): identification of the most common and abundant sedimentary isomers. Geochim Cosmochim Acta 64:3839

    CAS  Google Scholar 

  42. Sinninghe Damsté JS, Muyzer G, Abbas B, Rampen SW, Masse G, Allard WG, Belt ST, Robert J-M, Rowland SJ, Moldowan JM, Barbanti SM, Fago FJ, Denisevich P, Dahl J, Trindade LAF, Schouten S (2004) The rise of the rhizosolenid diatoms. Science 304:584

    Google Scholar 

  43. Volkman JK, Barrett SM, Dunstan GA (1994) C25 and C30 highly branched isoprenoid alkenes in laboratory cultures of two marine diatoms. Org Geochem 21:407

    CAS  Google Scholar 

  44. Belt ST, Cooke DA, Robert J-M, Rowland S (1996) Structural characterization of widespread polyunsaturated isoprenoid biomarkers: a C25 triene, tetraene and pentaene from the diatom Haslea ostrearia Simonsen. Tetrahedron Lett 37:4655

    Google Scholar 

  45. Moldowan JM, Seifert WK (1980) First discovery of botryococcane in petroleum. J Chem Soc Chem Commun:912

    Google Scholar 

  46. McKirdy DM, Cox RE, Volkman JK, Howell VJ (1986) Botryococcane in a new class of Australian non-marine crude oils. Nature 320:57

    CAS  Google Scholar 

  47. Metzger P, Largeau C, Casadevall E (1991) Lipids and macromolecular lipids of the hydrocarbon-rich microalga Botryococcus braunii. Chemical structure and biosynthesis. Prog Chem Org Nat Prod 57:1

    Google Scholar 

  48. Maxwell JR, Douglas AG, Eglinton G, McCormick A (1968) The Botryococcenes − hydrocarbons of novel structure from the alga Botryococcus braunii, Kützing. Phytochemistry 7:2157

    CAS  Google Scholar 

  49. White JD, Somers TC, Reddy GN (1986) Absolute configuration of (–)-botryococcene. J Am Chem Soc 108:5352

    CAS  Google Scholar 

  50. Ingram LL, Ellis J, Crisp PT, Cook AC (1983) Comparative study of oil shales and shale oils from the Mahogany Zone, Green River Formation (U.S.A.) and Kerosene Creek Seam, Rundle Formation (Australia). Chem Geol 38:185

    CAS  Google Scholar 

  51. Kissin YV (1990) Catagenesis of light cycloalkanes in petroleum. Org Geochem 15:575

    CAS  Google Scholar 

  52. Shimoyama A, Yabuta H (2002) Mono- and bicyclic alkanes and diamantoid hydrocarbons in the Cretaceous/Tertiary boundary sediments at Kawaruppu, Hokkaido, Japan. Geochem J 36:173

    CAS  Google Scholar 

  53. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095

    PubMed  CAS  Google Scholar 

  54. Audino M, Grice K, Alexander R, Kagi RI (2001) Macrocyclic-alkanes: a new class of biomarker. Org Geochem 32:759

    CAS  Google Scholar 

  55. Alexander R, Kagi R, Noble R (1983) Identification of the bicyclic sesquiterpenes drimane and eudesmane in petroleum. J Chem Soc Chem Commun:226

    Google Scholar 

  56. Brassell SC, Eglinton G, Maxwell JR (1983) The geochemistry of terpenoids and steroids. Biochem Soc Trans 11:575

    PubMed  CAS  Google Scholar 

  57. Barakat AO, Rullkötter J (2005) Gas chromatographic/mass spectrometric analysis of cembrenoid diterpenes in kerogen from a lacustrine sediment. Org Mass Spectrom 28:157

    Google Scholar 

  58. van Aarssen BGK, Kruk C, Hessels JKC, de Leeuw JW (1990) cis-cis-trans-Bicadinane, an uncommon triterpane family isolated from crude oils. Tetrahedron Lett 31:4645

    Google Scholar 

  59. van Aarssen BGK, Cos HC, Hoogendoorn P, de Leeuw JW (1990) A cadinene biopolymer in fossil and extant dammar resins as a source for cadinanes and bicadinanes in crude oils from Southeast Asia. Geochim Cosmochim Acta 54:3021

    Google Scholar 

  60. van Aarssen BGK, Hessels JKC, Abbink OA, de Leeuw JW (1992) The occurrence of polycyclic sesqui-, tri-, and oligoterpenoids derived from a resinous polymeric cadinene in crude oils from southeast Asia. Geochim Cosmochim Acta 56:1231

    Google Scholar 

  61. Cox HC, de Leeuw JW, Schenck PA, van Koningsveld H, Jansen JC, van de Graaf B, van Geerestein VJ, Kanters JA, Kruk C, Jans AWH (1986) Bicadinane, a C30 pentacyclic isoprenoid hydrocarbon found in crude oil. Nature 319:316

    CAS  Google Scholar 

  62. Simoneit BRT, Grimalt JO, Wang TG, Cox RE, Hatcher PG, Nissenbaum A (1986) Cyclic terpenoids of contemporary resinous plant detritus and of fossil woods, ambers and coals. Org Geochem 10:877

    CAS  Google Scholar 

  63. Summons RE, Boreham CJ, Foster CB, Murray AP, Gorter JD (1995) Chemostratigraphy and composition of oils in the Perth Basin, Western Australia. Aust Petrol Prod Expl Assoc J 35:613

    CAS  Google Scholar 

  64. Mineralienatlas: https://www.mineralienatlas.de/lexikon/index.php/MineralData?mineral=Fichtelite

  65. Ruzicka L, Waldmann E (1935) Polyterpene und Polyterpenoide XCVI. Zur Konstitution des Fichtelits. Helv Chim Acta 18:611

    CAS  Google Scholar 

  66. Taber DF, Saleh SA (1980) Intramolecular Diels-Alder route to angularly substituted perhydrophenanthrenes. Synthesis of (±)-fichtelite. J Am Chem Soc 102:5085

    CAS  Google Scholar 

  67. Mineralienatlas: https://www.mineralienatlas.de/lexikon/index.php/MineralData?mineral=Simonellite

  68. Mineralienatlas: https://www.mineralienatlas.de/lexikon/index.php/MineralData?mineral=Reten

  69. Mineralienatlas: https://www.mineralienatlas.de/lexikon/index.php/MineralData?mineral=Dinit

  70. Noble RA, Knox J, Alexander R Kagi RI (1985) Identification of tetracyclic hydrocarbons in Australian crude oils and sediments. J Chem Soc Chem Commun:32

    Google Scholar 

  71. Noble RA, Alexander R, Kagi RI, Knox J (1985) Tetracyclic diterpanoid hydrocarbons in some Australian coals, sediments and crude oils. Geochim Cosmochim Acta 49:2141

    CAS  Google Scholar 

  72. Noble RA, Alexander R, Kagi RI, Nox JK (1986) Identification of some diterpenoid hydrocarbons in petroleum. Org Geochem 10:825

    CAS  Google Scholar 

  73. Noble RA (1986) A geochemical study of bicyclic alkanes and diterpenoid hydrocarbons in crude oils, sediments, and coals. PhD Thesis, Department of Organic Chemistry, University of Western Australia, Perth, Australia

    Google Scholar 

  74. Disnar JR, Harouna M (1994) Biological origin of tetracyclic diterpanes, n-alkanes and other biomarkers in lower carboniferous Gondwana coals (Niger). Org Geochem 21:143

    Google Scholar 

  75. Sheng G, Simoneit BRT, Leif RN, Chen X, Fu J (1992) Tetracyclic terpanes enriched in Devonian cuticle humin coals. Fuel 71:523

    CAS  Google Scholar 

  76. Schulze T, Michaelis W (1990) Structure and origin of terpenoid hydrocarbons in some German coals. Org Geochem 16:1051

    CAS  Google Scholar 

  77. Haidinger W (1841) Ueber den Hartit, eine neue Species aus der Ordnung der Erdharze. Ann Phys Chem 54:262

    Google Scholar 

  78. Moldowan JM, Seifert WK, Gallegos EJ (1983) Identification of an extended series of tricyclic terpanes in petroleum. Geochim Cosmochim Acta 47:1531

    CAS  Google Scholar 

  79. Dzou LIP, Noble RA, Senftle JT (1995) Maturation effects on absolute biomarker concentration in a suite of coals and associated vitrinite concentrates. Org Geochem 23:681

    CAS  Google Scholar 

  80. Behrens A, Schaeffer P, Albrecht P (2000) Occurrence of precursors of regular tricyclopolyprenoids in recent sediments. Org Lett 2:361

    PubMed  CAS  Google Scholar 

  81. Ungur N, Kulciţki V (2009) Occurrence, biological activity and synthesis of cheilanthane sesterterpenoids. Tetrahedron 65:3815

    CAS  Google Scholar 

  82. Mills JS, Werner AEA (1955) The chemistry of dammar resin. J Chem Soc:3132

    Google Scholar 

  83. Ourisson G, Albrecht P (1992) Hopanoids. 1. Geohopanoids: the most abundant natural products on earth? Acc Chem Res 25:398

    CAS  Google Scholar 

  84. Mello MR, Koutsoukos EAM, Hart MB, Brassell SC, Maxwell JR (1989) Late Cretaceous anoxic events in the Brazilian continental margin. Org Geochem 14:529

    CAS  Google Scholar 

  85. Moldowan JM, Fago FJ, Carlson RMK Young DC, van Duvne G, Clardy J, Schoell M, Pillinger CT, Watt DS (1991) Rearranged hopanes in sediments and petroleum. Geochim Cosmochim Acta 55:3333

    CAS  Google Scholar 

  86. van Dorsselaer A, Albrecht P, Ourisson G (1977) Identification of novel 17α(H)-hopanes in shales, coals, lignites, sediments and petroleum. Bull Soc Chim Fr:165

    Google Scholar 

  87. Avogadro, an advanced, free open source molecular editor: http://avogadro.cc/wiki/Main_Page

  88. Falk H, Etzlstorfer C, unpublished results

    Google Scholar 

  89. French KL, Tosca NJ, Cao C, Summons RE (2012) Diagenetic and detrital origin of moretane anomalies through the Permian-Triassic boundary. Geochim Cosmochim Acta 84:104

    CAS  Google Scholar 

  90. Rohmer M (1993) The biosynthesis of triterpenoids of the hopane series in Eubacteria: a mine of new enzyme reactions. Pure Appl Chem 65:1293

    CAS  Google Scholar 

  91. Ourisson G, Albrecht P, Rohmer M (1979) The hopanoids. Palaeochemistry and biochemistry of a group of natural products. Pure Appl Chem 51:709

    CAS  Google Scholar 

  92. Peters KE, Moldowan JM (1991) Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum. Org Geochem 17:47

    CAS  Google Scholar 

  93. Rullkötter J, Philip P (1981) Extended hopanes up to C40 in Thornton bitumen. Nature 292:616

    Google Scholar 

  94. Rullkötter J, Nissenbaum A (1988) Dead Sea asphalt in Egyptian mummies: molecular evidence. Naturwissenschaften 75:618

    PubMed  Google Scholar 

  95. Rohmer M, Ourisson G (1976) Structure des bactériohopanetétrols d’Acetobacter xylinum. Tetrahedron Lett 40:3633

    Google Scholar 

  96. Summons RE, Jahnke LL, Hope JM, Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554

    PubMed  CAS  Google Scholar 

  97. Rasmussen B, Fletcher IR, Brocks JJ, Kilburn MR (2008) Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101

    PubMed  CAS  Google Scholar 

  98. Zundel M, Rohmer M (1985) Procaryotic triterpenoids I. 3β-Methylhopanoids from Acetobacter species and Methylococcus capsulatus. Eur J Biochem 150:23

    PubMed  CAS  Google Scholar 

  99. Burhan RYP, Trendel J-M, Adam P, Wehrung P, Albrecht P, Nissenbaum A (2002) Fossil bacterial ecosystem at methane seeps: origin of organic matter from Be’eri sulfur deposit, Israel. Geochim Cosmochim Acta 23:4085

    Google Scholar 

  100. Paull R, Michaelsen BH, McKirdy DM (1998) Fernenes and other triterpenoid hydrocarbons in Dicroidium-bearing Triassic mudstones and coals from South Australia. Org Geochem 29:1331

    CAS  Google Scholar 

  101. Stefanova M, Magnier C, Velinova D (1995) Biomarker assemblage of some Miocene-aged Bulgarian lignite lithotypes. Org Geochem 23:1067

    CAS  Google Scholar 

  102. Rullkötter J, Leythauser D, Wendisch D (1982) Novel 23,28-bisnorlupanes in Tertiary sediments. Widespread occurrence of nuclear demethylated triterpenes. Geochim Cosmochim Acta 46:2501

    Google Scholar 

  103. Connan J, Dessort D (1987) Novel family of hexacyclic hopanoid alkanes (C32 C35) occurring in sediments and oils from anoxic paleoenvironments. Org Geochem 11:103

    CAS  Google Scholar 

  104. Trendel J-M, Graff R, Wehrung P, Albrecht P, Dessort D, Connan J (1993) C(14α)-homo-26-nor-17α-Hopanes, a novel and unexpected series of molecular fossils in biodegraded petroleum. J Chem Soc Chem Commun:461

    Google Scholar 

  105. Fazeelat T, Alexander R, Kagi RI (1995) Molecular structures of sedimentary 8,14-secohopanes inferred from their gas chromatographic retention behaviour. Org Geochem 23:641

    CAS  Google Scholar 

  106. Wang T-G, Simoneit BRT (1990) Organic geochemistry and coal petrology of Tertiary brown coal in the Zhoujing mine, Baise Basin, South China: 2. Biomarker assemblage and significance. Fuel 69:12

    CAS  Google Scholar 

  107. Nytoft HP, Bojesen-Koefoed JA, Christiansen FG (2000) C26 and C28−C34 28-norhopanes in sediments and petroleum. Org Geochem 31:25

    CAS  Google Scholar 

  108. ten Haven HL, Rullkötter J (1988) The diagenetic fate of taraxer-14-ene and oleanane isomers. Geochim Cosmochim Acta 52:2543

    Google Scholar 

  109. Moldowan JM, Dahl J, Huizinga BJ, Fago FJ, Hickey LJ, Peakman TM, Taylor DW (1994) The molecular fossil record of oleanane and its relation to angiosperms. Science 265:768

    PubMed  CAS  Google Scholar 

  110. Riva A, Caccialanza PG, Quagliaroli F (1988) Recognition of 18β(H)-oleanane in several crudes and Tertiary-Upper Cretaceous sediments. Definition of a new maturity parameter. Org Geochem 13:671

    CAS  Google Scholar 

  111. Sinninghe Damsté JS, Kenig F, Koopmans MP, Köster J, Schouten S, Hayes JM, de Leeuw JW (1995) Evidence for gammacerane as an indicator of water column stratification. Geochim Cosmochim Acta 59:1895

    PubMed  Google Scholar 

  112. Venkatesan MI (1989) Tetrahymenol: its widespread occurrence and geochemical significance. Geochim Cosmochim Acta 53:3095

    CAS  Google Scholar 

  113. Ourisson G, Rohmer M, Poralla K (1987) Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annu Rev Microbiol 41:301

    PubMed  CAS  Google Scholar 

  114. Kimble BJ, Maxwell JR, Philp RP, Eglinton G (1974) Identification of steranes and triterpanes in geolipid extracts by high-resolution gas chromatography and mass spectrometry. Chem Geol 14:173

    CAS  Google Scholar 

  115. Pearson MJ, Obaje NG (1999) Onocerane and other triterpenoids in Late Cretaceous sediments from the Upper Benue Trough, Nigeria: tectonic and palaeoenvironmental implications. Org Geochem 30:583

    CAS  Google Scholar 

  116. Schaeffer P, Poinsot J, Hauke V, Adam P, Wehrung P, Trendel J-M, Albrecht P, Dessort D, Connan J (1994) Novel optically active hydrocarbons in sediments: evidence for an extensive biological cyclization of higher regular polyprenols. Angew Chem Int Ed 33:1166

    Google Scholar 

  117. Riediger CL, Fowler MG, Snowdon LR (1997) Organic geochemistry of the Lower Cretaceous ostracode zone, a brackish/non-marine source of some lower Mannville oils in southeastern Alberta. In: Pemberton SG, David PJ (eds) Petroleum geology of the Cretaceous Mannville Group, Western Canada. Can Soc Petrol Geol Mem 18:93

    Google Scholar 

  118. Bach T, Rohmer M (eds) (2013) Isoprenoid synthesis in plants and microorganisms. New concepts and experimental approaches. Springer, Heidelberg

    Google Scholar 

  119. Concepción MR (ed) (2014) Plant isoprenoids. Springer, Heidelberg

    Google Scholar 

  120. Makin HLJ, Gower DB (eds) (2010) Steroid analysis. Springer, Heidelberg

    Google Scholar 

  121. Thomson RH (ed) (1993) The chemistry of natural products. Springer, Heidelberg

    Google Scholar 

  122. Melendez I, Grice K, Schwark L (2013) Exceptional preservation of Palaeozoic steroids in a diagenetic continuum. Sci Rep 3:2768

    PubMed  PubMed Central  Google Scholar 

  123. Rubinstein I, Sieskind O, Albrecht P (1975) Rearranged sterenes in a shale: occurrence and simulated formation. J Chem Soc Perkin Trans I:1833

    Google Scholar 

  124. Peters KE, Moldowan JM, LaCroce MV, Kubicki JD (2014) Stereochemistry, elution order and molecular modeling of four diaergostanes in petroleum. Org Geochem 76:1

    CAS  Google Scholar 

  125. Mackenzie AS, Brassell SC, Eglinton G, Maxwell JR (1982) Chemical fossils: the geological fate of steroids. Science 217:491

    PubMed  CAS  Google Scholar 

  126. Brassell SC, McEvoy J, Hoffmann CF, Lamb NA, Peakman TM, Maxwell JR (1984) Isomerisation, rearrangement and aromatisation of steroids in distinguishing early stages of diagenesis. Adv Org Geochem 6:11

    CAS  Google Scholar 

  127. Mackenzie AS, Lamb NA, Maxwell JR (1982) Steroid hydrocarbons and the thermal history of sediments. Nature 259:223

    Google Scholar 

  128. Grantham PJ, Wakefield LL (1988) Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time. Org Geochem 12:61

    CAS  Google Scholar 

  129. Moldowan JM, Fago FJ, Lee CY, Jacobson SR, Watt DS, Slogui N-E, Jeganathan A, Young DC (1990) Sedimentary 24-n-propylcholestanes, molecular fossils diagnostic of marine algae. Science 247:309

    PubMed  CAS  Google Scholar 

  130. McCafferey MA, Moldowan JM, Lipton PA, Summons RE, Peters KE, Jeganathan A, Watt DS (1994) Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic age petroleum and bitumen. Geochim Cosmochim Acta 58:529

    Google Scholar 

  131. Love GD, Grosjean E, Stalvies C, Fike DA, Grotzinger JP, Bradley AS, Kelly AE, Bhatia M, Meredith W, Snape CE, Bowring SA, Condon DJ, Summons RE (2009) Fossil steroids record the appearance of Desmospongiae during the Cryogenian period. Nature 457:718

    PubMed  CAS  Google Scholar 

  132. Antcliffe JB (2013) Questioning the evidence of organic compounds called sponge biomarkers. Palaeontology 56:917

    Google Scholar 

  133. Wolff GA, Lamb NA, Maxwell JR (1986) The origin and fate of 4-methyl steroid hydrocarbons. I. Diagenesis of 4-methyl sterenes. Geochim Cosmochim Acta 50:335

    CAS  Google Scholar 

  134. Dastillung M, Albrecht P (1977) Δ2-Sterenes as diagenetic intermediates in sediments. Nature 269:678

    CAS  Google Scholar 

  135. Dahl J, Moldowan JM, Summons RE, McCaffrey MA, Lipton P, Watt DS, Hope JM (1995) Extended 3β-alkyl steranes and 3-alkyl triaromatic steroids in crude oils and rock extracts. Geochim Cosmochim Acta 59:3717

    CAS  Google Scholar 

  136. Zhang S, Moldowan JM, Li M, Bian L, Zhang B, Wang F, He Z, Wang D (2002) The abnormal distribution of the molecular fossils in the pre-Cambrian and Cambrian: its biological significance. Sci China Ser D 45:193

    CAS  Google Scholar 

  137. Holba AG, Tegelaar EW, Huizinga BJ, Moldowan JM, Singletary MS, McCaffrey MA, Dzou LIP (1998) 24-Norcholeatanes as age-sensitive molecular fossils. Geology 26:783

    CAS  Google Scholar 

  138. Rampen SW, Schouten S, Abbas B, Panoto FE, Muyzer G, Campbell CN, Fehling J, Sinninghe Damsté JS (2007) On the origin of 24-norcholestanes and their use as age-diagnostic biomarkers. Geology 35:419

    Google Scholar 

  139. Riolo J, Albrecht P (1985) Novel rearranged ring C monoaromatic steroid hydrocarbons in sediments and petroleum. Tetrahedron Lett 26:2701

    CAS  Google Scholar 

  140. Riolo J, Ludwig B, Albrecht P (1985) Synthesis of C ring monoaromatic steroid hydrocarbons occurring in geological samples. Tetrahedron Lett 26:2697

    CAS  Google Scholar 

  141. Riolo J, Hussler G, Albrecht P, Connan J (1986) Distribution of aromatic steroids in geological samples: their evaluation as geochemical parameters. Org Geochem 10:981

    CAS  Google Scholar 

  142. Moldowan JM, Fago FJ (1986) Structure and significance of a novel rearranged monoaromatic steroid hydrocarbon in petroleum. Geochim Cosmochim Acta 50:343

    CAS  Google Scholar 

  143. Ludwig B, Hussler G, Wehrung P, Albrecht P (1981) C26–C29 triaromatic steroid derivatives in sediments and petroleums. Tetrahedron Lett 22:3313

    CAS  Google Scholar 

  144. Koopmans MP, Köster J, van Kaam-Peters HME, Kenig F, Schouten S, Hartgers WA, de Leeuw JW, Sinninghe Damsté JS (1996) Diagenetic and catagenetic products of isorenieratene: molecular indicators for photic zone anoxia. Geochim Cosmochim Acta 60:4467

    CAS  Google Scholar 

  145. Grice K, Cao C, Love GD, Böttcher ME, Twitchett RJ, Grosjean E, Summons RE, Turgeon SC, Dunning W, Jin Y (2005) Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307:706

    PubMed  CAS  Google Scholar 

  146. Brocks JJ, Schaeffer P (2008) Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640 Ma Barney Creek Formation. Geochim Cosmochim Acta 72:1396

    CAS  Google Scholar 

  147. Sinninghe Damsté JS, Koopmans MP (1997) The fate of carotenoids in sediments: an overview. Pure Appl Chem 69:2067

    Google Scholar 

  148. Ellis L, Langworthy TA, Winans R (1996) Occurrence of phenylalkanes in some Australian crude oils and sediments. Org Geochem 24:57

    CAS  Google Scholar 

  149. Lu H, Wang L, Song Z, Greenwood P, Yin Q (2011) Occurrence and distribution of series long-chain alkyl naphthalenes in Late Cretaceous sedimentary rocks of the Songliao Basin, China. Geochem J 45:125

    CAS  Google Scholar 

  150. Radke M, Rullkötter J, Vriend SP (1994) Distribution of naphthalenes in crude oils from the Java Sea: source and maturation effects. Geochim Cosmochim Acta 58:3675

    CAS  Google Scholar 

  151. Strachan MG, Alexander R, Kagi RI (1986) Trimethylnaphthalenes in crude oils and sediments: effects of source and maturity. Geochim Cosmochim Acta 52:1255

    Google Scholar 

  152. van Aarssen BGK, Alexander R, Kagi RI (1996) The origin of Barrow Sub-basin crude oil: a geochemical correlation using land-plant biomarkers. Aust Petrol Prod Expl Assoc J 36:465

    Google Scholar 

  153. Ellis L, Singh RK, Alexander R, Kagi RI (1996) Formation of isohexyl alkylaromatic hydrocarbons from aromatization-rearrangement of terpenoids in the sedimentary environment: a new class of biomarker. Geochim Cosmochim Acta 60:4747

    CAS  Google Scholar 

  154. Berthod A, Wang X, Gahm KH, Armstrong DW (1998) Quantitative and stereoisomeric determination of light biomarkers in crude oil and coal samples. Geochim Cosmochim Acta 62:1619

    CAS  Google Scholar 

  155. Ellis L, Singh RK, Alexander R, Kagi RI (1995) Identification and occurrence of dihydro-ar-curcumene in crude oils and sediments. Org Geochem 23:197

    CAS  Google Scholar 

  156. Wen Z, Wang R, Radke M, Wu Q, Sheng G, Liu Z (2000) Retene in pyrolysates of algal and bacterial organic matter. Org Geochem 31:757

    Google Scholar 

  157. Silliman JE, Meyers PA, Ostrom PH, Ostrom NW, Eadie BJ (2000) Insights into the origin of perylene from isotopic analyses of sediments from Saanich Inlet, British Columbia. Org Geochem 31:1133

    CAS  Google Scholar 

  158. Jiang C, Alexander R, Kagi RI, Murray AP (2000) Origin of perylene in ancient sediments and its geological significance. Org Geochem 31:1545

    CAS  Google Scholar 

  159. Gill M, Steglich W (1987) Pigments of fungi (Macromycetes). Prog Chem Org Nat Prod 51:1

    CAS  Google Scholar 

  160. Grice K, Lu H, Atahan P, Asif M, Hallmann C, Grenwood P, Maslen E, Tulipani S, Williford K, Dodson J (2009) New insights into the origin of perylene in geological samples. Geochim Cosmochim Acta 73:6531

    CAS  Google Scholar 

  161. Stein SE (1978) On the high temperature chemical equilibria of polycyclic aromatic hydrocarbons. J Phys Chem 82:566

    CAS  Google Scholar 

  162. Simoneit BRT (2002) Molecular indicators (biomarkers) of past life. Anat Rec 268:186

    PubMed  CAS  Google Scholar 

  163. Wolkenstein K, Gross JH, Oeser T, Schöler HF (2002) Spectroscopic characterization and crystal structure of the 1,2,3,4,5,6-hexahydrophenanthro[1,10,9,8-opqra]perylene. Tetrahedron Lett 43:1653

    CAS  Google Scholar 

  164. Treibs A (1934) Über das Vorkommen von Chlorophyllderivaten in einem Ölschiefer aus der oberen Trias. Liebigs Ann Chem 509:103

    CAS  Google Scholar 

  165. Callot HJ, Ocampo R (2000) Geochemistry of porphyrins. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook 1. Academic Press, San Diego, p 349

    Google Scholar 

  166. Espinosa M, Pacheco US, Leyte F, Ocampo R (2014) Separation and identification of porphyrin biomarkers from a heavy crude oil Zaap-1 offshore well, Sonda de Campeche, México. J Porphyrins Phthalocyanines 18:542

    CAS  Google Scholar 

  167. van Berkel GJ, Quirke JME, Filby RH (1989) The Henryville Bed of the New Albany shale − I. Preliminary characterization of the nickel and vanadyl porphyrins in the bitumen. Org Geochem 14:119

    Google Scholar 

  168. Gibbison R, Peakman TM, Maxwell JR (1995) Novel porphyrins as molecular fossils for anoxygenic photosynthesis. Tetrahedron Lett 36:9057

    CAS  Google Scholar 

  169. Chicarelli MI, Hayes JM, Popp BN, Eckardt CB, Maxwell JR (1993) Carbon and nitrogen isotopic compositions of alkyl porphyrins from the Triassic Serpiano oil shale. Geochim Cosmochim Acta 57:1307

    PubMed  CAS  Google Scholar 

  170. Moldowan JM, Sundararaman P, Schoell M (1986) Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of SW-Germany. Org Geochem 10:915

    CAS  Google Scholar 

  171. Clezy PS, Fookes CJR, Prashar JK, Salek A (1992) The chemistry of pyrrolic compounds. LXVII. A new demethyl analog of DPEP (desoxophylloeythroetioporphyrin). Aust J Chem 45:703

    CAS  Google Scholar 

  172. Huseby B, Ocampo R (1997) Evidence for porphyrins bound, via ester bonds, to the Messel oil shale kerogen by selective chemical degradation experiments. Geochim Cosmochim Acta 61:3951

    CAS  Google Scholar 

  173. Wolff GA, Chicarelli MI, Shaw GJ, Evershed RP, Quirke JME, Maxwell JR (1984) Structure analysis of naturally occurring alkyl porphyrins by hydrogen chemical ionization mass spectrometry. Tetrahedron 40:3777

    CAS  Google Scholar 

  174. Sundararaman P, Hwang RJ, Ocampo R, Boreham CJ, Callot HJ, Albrecht P (1994) Temporal changes in the distribution of C33 cycloheptenoDPEP and 17-nor C30 DPEP in rocks. Org Geochem 21:1051

    CAS  Google Scholar 

  175. Keely BJ, Harris PG, Popp BN, Hayes JM, Meischner D, Maxwell JR (1994) Porphyrin and chlorin distributions in a late Pliocene lacustrine sediment. Geochim Cosmochim Acta 58:3691

    PubMed  CAS  Google Scholar 

  176. Suo Z, Avci R, Higby Schweitzer MH, Deliorman M (2007) Porphyrin as an ideal biomarker in the search for extraterrestrial life. Astrobiology 7:605

    PubMed  CAS  Google Scholar 

  177. Montforts F-P, Glasenapp-Breiling M (2002) Naturally occurring cyclic tetrapyrroles. Prog Chem Org Nat Prod 84:1

    CAS  Google Scholar 

  178. Bonnett R, Burke PJ, Czechowski F, Reszka A (1984) Porphyrins and metalloporphyrins in coal. Org Geochem 6:177

    CAS  Google Scholar 

  179. Ocampo R, Bauder C, Callot HJ, Albrecht P (1992) Porphyrins from Messel oil shale (Eocene, Germany): structure elucidation, geochemical and biological significance, and distribution as a function of depth. Geochim Cosmochim Acta 56:745

    CAS  Google Scholar 

  180. Bonnettt R, Burke PJ, Reszka A (1983) Iron porphyrins in coal. J Chem Soc Chem Commun:1085

    Google Scholar 

  181. Bonnett R, Burke PJ, Czechowski F (1987) Metalloporphyrins in lignite, coal, and calcite. In: Filby RH, Branthaver JF (eds) Metal complexes in fossil fuels. ACS Symp Ser 344:173

    Google Scholar 

  182. Bauder C, Ocampo R, Callot HJ, Albrecht P (1990) Structural evidence for heme fossils in Messel oil shale (FRG). Naturwissenschaften 77:378

    CAS  Google Scholar 

  183. Fookes CJR (1985) The etioporphyrins of oil shale: structural evidence for their derivation from chlorophyll. J Chem Soc Chem Commun:706

    Google Scholar 

  184. Quirke JME, Eglinton G, Maxwell JR (1979) Petroporphyrins. 1. Preliminary characterization of the porphyrins of gilsonite. J Am Chem Soc 101:7693

    CAS  Google Scholar 

  185. Mineralienatlas: https://www.mineralienatlas.de/lexikon/index.php/MineralData?mineral=Gilsonit

  186. Huseby B, Ocampo R, Bauder C, Callot HJ, Rist K, Barth T (1996) Study of the porphyrins released from the Messel oil shale kerogen by hydrous pyrolysis experiments. Org Geochem 24:691

    CAS  Google Scholar 

  187. Greenwalt DE, Goreva YS, Siljeström SM, Rose T, Harbach RE (2013) Hemoglobin-derived porphyrins preserved in a Middle Eocene blood-engorged mosquito. Proc Natl Acad Sci USA 110:18496

    PubMed  CAS  Google Scholar 

  188. Soma Y, Tanaka A, Soma M, Kawai T (1996) Photosynthetic pigments and perylene in the sediments of southern basin of Lake Baikal. Org Geochem 24:553

    CAS  Google Scholar 

  189. Niklas KJ, Giannasi DE (1977) Flavonoids and other chemical constituents of fossil Miocene Zelkova (Ulmaceae). Science 196:877

    PubMed  CAS  Google Scholar 

  190. Giannasi DE, Niklas KJ (1977) Flavonoid and other chemical constituents of fossil Miocene Celtis and Ulmus (Succor Creek Flora). Science 197:765

    CAS  Google Scholar 

  191. Dilcher DL, Pavlick RJ, Mitchell J (1970) Chlorophyll derivatives in Middle Eocene sediments. Science 168:1447

    PubMed  CAS  Google Scholar 

  192. Keely BJ, Brereton RG, Maxwell JR (1988) Occurrence and significance of pyrochlorins in a lake sediment. Org Geochem 13:801

    CAS  Google Scholar 

  193. Prowse WG, Keely BJ, Maxwell JR (1990) A novel sedimentary metallochlorin. Org Geochem 16:1059

    CAS  Google Scholar 

  194. Storm CB, Krane J, Skjetne T, Telnaes N, Branthaver JF, Baker EW (1984) The structure of abelsonite. Science 223:1075

    PubMed  CAS  Google Scholar 

  195. Mineralienatlas: https://www.mineralienatlas.de/lexikon/index.php/MineralData?mineral=Abelsonit

  196. Ocampo R, Sachs JP, Repeta DJ (1999) Isolation and structure determination of the unstable 132,173-cyclopheophorbide a enol from recent sediments. Geochim Cosmochim Acta 63:3743

    CAS  Google Scholar 

  197. Karuso P, Bergquist PR, Buckleton JS, Cambie RC, Clark GR, Rickard CEF (1986) 132,173-Cyclopheophorbide enol, the first porphyrin isolated from a sponge. Tetrahedron Lett 27:2177

    CAS  Google Scholar 

  198. Sakata K, Amamoto K, Ishikawa H, Yagi A, Etoh H, Ina K (1990) Chlorophyllone-a, a new pheophorbide-a related compound isolated from Ruditapes philippinarum as an antioxidative compound. Tetrahedron Lett 31:1165

    CAS  Google Scholar 

  199. Falk H, Hoornaert G, Isenring HP, Eschenmoser A (1975) Über Enolderivate der Chlorophyllreihe. Darstellung von 132,173-Cyclopheophorbid-enolen. Helv Chim Acta 58:2347

    CAS  Google Scholar 

  200. Chicarelli MI, Wolff GA, Murray M, Maxwell JR (1984) Porphyrins with a novel exocyclic ring system in an oil shale. Tetrahedron 40:4033

    CAS  Google Scholar 

  201. Igic B, Greenwood D, Palmer D, Cassey P, Gill B, Grim T, Brennan PR, Bassett S, Battley P, Hauber M (2010) Detecting pigments from colourful eggshells of extinct birds. Chemoecology 20:43

    Google Scholar 

  202. Wiemann J, Yang T, Sander PNN, Schneider M, Engeser M, Kath-Schorr S, Müller CE, Sander PM (2015) The blue-green eggs of dinosaurs: how fossil metabolites provide insights into the evolution of bird reproduction. PeerJ PrePrints 3:e1323. doi:10.7287/peerj.preprints.1080v1

    Article  Google Scholar 

  203. Tichy G (1980) Colour retention in Triassic gastropods. Verh Geol BA 1980:175

    Google Scholar 

  204. Falk H (1989) The chemistry of linear oligopyrroles and bile pigments. Springer, Vienna

    Google Scholar 

  205. Lightner DA (2013) Bilirubin: Jekyll and Hyde pigment of life. Prog Chem Org Nat Prod 98:1

    PubMed  Google Scholar 

  206. Kräutler B (2008) Chlorophyll catabolites. Prog Chem Org Nat Prod 89:1

    Google Scholar 

  207. Kräutler B (2016) Breakdown of chlorophyll in higher plants—phyllobilins as abundant, yet hardly visible signs of ripening, senescence, and cell death. Angew Chem Int Ed 55:4882

    Google Scholar 

  208. Troxler RF, Smith KM, Brown SB (1980) Mechanism of the photo-oxidation of bacteriochlorophyll-c derivatives. Tetrahedron Lett 21:491

    CAS  Google Scholar 

  209. Grice K, Gibbison R, Atkinson JE, Schwark L, Eckardt CB, Maxwell JR (1996) Maleimides (1H-pyrrole-2,5-diones) as molecular indicators of anoxygenic photosynthesis in ancient water columns. Geochim Cosmochim Acta 60:3913

    CAS  Google Scholar 

  210. Grice K, Schaeffer P, Schwark L, Maxwell JR (1997) Changes in palaeoenvironmental conditions during deposition of the Permian Kupferschiefer (lower Rhine Basin, northwest Germany) inferred from molecular and isotopic compositions of biomarker components. Org Geochem 26:677

    CAS  Google Scholar 

  211. Sinninghe Damsté JS, Kock-van Dalen ACK, de Leeuw JW, Schenck PA, Guoying S, Brassell SC (1987) The identification of mono-, di- and trimethyl 2-methyl-(4,8,12-trimethyltridecyl)chromans and their occurrence in the geosphere. Geochim Cosmochim Acta 51:2393

    Google Scholar 

  212. Schwark L, Vliex M, Schaeffer P (1998) Geochemical characterization of Malm Zeta laminated carbonates from the Franconian Alb, SW-Germany. Org Geochem 29:1921

    CAS  Google Scholar 

  213. Li M, Larter SR, Taylor P, Jones DM, Bowler B, Bjorøy M (1995) Comments on “Biomarkers or not biomarkers? A new hypothesis for the origin of pristane involving derivation from methyltrimethyltridecylchromans (MTTCs) formed during diagenesis form chlorophyll and alkylphenols. Org Geochem 23:159

    CAS  Google Scholar 

  214. Sinninghe Damsté JS, de Leeuw JW (1996) Comments on “Biomarkers or not biomarkers. A new hypothesis for the origin of pristane involving derivation from methyltrimethyltridecylchromans (MTTCs) formed during diagenesis from chlorophyll and alkylphenols” from M Li, S. R. Larter, P. Taylor P, D. M. Jones, B Bowler, M Bjorøy. Org Geochem 23:1085

    Google Scholar 

  215. Oldenburg TBP, Wilkes H, Horsfield B, van Duin ACT, Stoddart D, Wilhelms A (2002) Xanthones − novel aromatic oxygen-containing compounds in crude oils. Org Geochem 33:595

    CAS  Google Scholar 

  216. Russell M, Grimalt JO, Hartgers WA, Taberner C, Rouchy JM (1997) Bacterial and algal markers in sedimentary organic matter deposited under natural sulphurization conditions (Lorca Basin, Murcia, Spain). Org Geochem 26:605

    CAS  Google Scholar 

  217. Sinninghe Damsté JS, Rijpstra WIC, de Leeuw JW, Schenck PA (1989) The occurrence and identification of organic sulphur compounds in oils and sediment extracts: II. Their presence in samples from hypersaline and non-hypersaline palaeoenvironments and possible application as source, palaeoenvironmental and maturity indicators. Geochim Cosmochim Acta 53:1323

    Google Scholar 

  218. Grimalt JO, Grifoll M, Solanas AM, Albaigés J (1991) Microbial degradation of marine evaporitic crude oils. Geochim Cosmochim Acta 55:1903

    CAS  Google Scholar 

  219. Sinninghe Damsté JS, Kock-van Dalen AC, de Leeuw JW, Schenck PA (1987) The identification of 2,3-dimethyl-5-(2,6,10-trimethylundecyl)thiophene, a novel sulphur containing biological marker. Tetrahedron Lett 28:957

    Google Scholar 

  220. Xavier F, De Las HC, Grimalt JO, Lopez JF, Albaigés J, Sinninghe Damsté JS, Schouten S, De Leeuw JW (1997) Free and sulphurized hopanoids and highly branched isoprenoids in immature lacustrine oil shales. Org Geochem 27:41

    Google Scholar 

  221. Valisolalao J, Perakis N, Chappe B, Albrecht P (1984) A novel sulfur containing C35 hopanoid in sediments. Tetrahedron Lett 25:1183

    CAS  Google Scholar 

  222. Wei S (2005) Process and production system for thiophene manufacturing from butadiene and sulfur. Chinese Patent CN 1420116

    Google Scholar 

  223. Rosa M (1991) Archaebacteria: lipids, membrane structures, and adaption to environmental stresses. In: di Prisco G (ed) Life under extreme conditions. Springer, Heidelberg, p 61

    Google Scholar 

  224. de Rosa M, de Rosa S, Gambacorta A (1977) Lipid structures in the Caldariella group of extreme thermoacidophile bacteria. J Chem Soc Chem Commun:514

    Google Scholar 

  225. Schouten S, Hopmans EC, Pancost RD, Sinninghe Damsté JS (2000) Widespread occurrence of structurally diverse tetraether membrane lipids: evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. Proc Natl Acad Sci USA 97:14421

    PubMed  CAS  Google Scholar 

  226. Hopmans EC, Schouten S, Pancost RD, van der Meer MTJ, Sinninghe Damsté JS (2000) Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 14:585

    PubMed  CAS  Google Scholar 

  227. Hoefs MJL, Schouten S, de Leeuw JW, King LL, Wakeham SG, Sinninghe Damsté JS (1997) Ether lipids of planktonic Archaea in the marine water column. Appl Environ Microbiol 63:3090

    PubMed  PubMed Central  CAS  Google Scholar 

  228. Pancost RD, Hopmans EC, Sinninghe Damsté JS, MEDINAUT Shipboard Scientific Party (2001) Archaean lipids in Mediterranean cold seeps: molecular proxies for anaerobic methane oxidation. Geochim Cosmochim Acta 65:1611

    CAS  Google Scholar 

  229. Pauly GG, van Vleet ES (1986) Archaebacterial ether lipids: natural tracers of biogeochemical processes. Org Geochem 10:859

    CAS  Google Scholar 

  230. Nichols PD, Mancuso CA, White DC (1987) Measurement of methanotroph and methanogen signature phospholipids for use in assessment of biomass and community structure in model systems. Org Geochem 11:451

    CAS  Google Scholar 

  231. Yang H, Pancost RD, Jia C, Xie S (2016) The response of archaeal tetraether membrane lipids in surface soils to temperature: a potential palaeothermometer in paleosols. Geomicrobiol J 33:98

    CAS  Google Scholar 

  232. Chappe B, Michaelis W, Albrecht P, Ourisson G (1979) Fossil evidence for a novel series of archaebacterial lipids. Naturwissenschaften 66:522

    CAS  Google Scholar 

  233. Michaelis W, Albrecht P (1979) Molecular fossils of archaebacteria in kerogen. Naturwissenschaften 66:420

    CAS  Google Scholar 

  234. Schouten S, Hoefs MJL, Koopmans MP, Bosch H-J, Sinninghe Damsté JS (1998) Structural characterization, occurrence and fate of archeal ether-bound acyclic and cyclic biphytanes and corresponding diols in sediments. Org Geochem 29:1305

    CAS  Google Scholar 

  235. Sinninghe Damsté JS, Schouten S (1997) Is there evidence for a substantial contribution of prokaryotic biomass to organic carbon in Phanerozoic carbonaceous sediments? Org Geochem 26:517

    Google Scholar 

  236. Ajioka T, Yamamoto M, Murase J (2014) Branched and isoprenoid glycerol dialkyl tetraethers in soils and lake/river sediments in Lake Biwa basin and implications for MBT/CBT proxies. Org Geochem 73:70

    CAS  Google Scholar 

  237. Kuypers MMM, Blokker P, Erbacher J, Kinkel H, Pancost RD, Schouten S, Sinninghe Damsté JS (2001) Massive expansion of marine Archaea during a Mid-Cretaceous oceanic anoxic event. Science 293:9286

    Google Scholar 

  238. Ho SL, Mollenhauer G, Fietz S, Martinez-Garcia A, Lamy F, Rueda G, Schipper K, Méheust M, Rosell-Melé SR, Tiedemann R (2014) Appraisal of TEX86 and thermometries in subpolar and polar regions. Geochim Cosmochim Acta 131:213

    CAS  Google Scholar 

  239. Pancost RD, Bouloubassi I, Aloisi G, Sinninghe Damsté JS, MEDINAUT Shipboard Scientific Party (2001) Three series of non-isoprenoidal dialkyl glycerol diethers in cold-seep carbonate crusts. Org Geochem 32:695

    CAS  Google Scholar 

  240. Lockheart MJ, van Bergen PF, Evershed RP (2000) Chemotaxonomic classification of fossil leaves from the Miocene Clarkia lake deposit, Idaho, USA based on n-alkyl lipid distributions and principal component analyses. Org Geochem 31:1223

    CAS  Google Scholar 

  241. Huang Y, Li T, Lockheart MJ, Peakman TM, Eglinton G (1994) C26 to C32 1,3-Alkanediols, a novel series of biological markers identified in miocene (17-20 Ma) leaf fossils and sediment. Nat Prod Lett 4:15

    Google Scholar 

  242. Versteegh GJM, Jansen JHF, de Leeuw JW, Schneider RR (2000) Mid-chain diols and keto-ols in SE Atlantic sediments: a new tool for tracing past surface water masses? Geochim Cosmochim Acta 64:1879

    CAS  Google Scholar 

  243. Rampen SW, Schouten S, Schefuß E, Sinninghe Damsté JS (2009) Impact of temperature on long chain diol and mid-chain hydroxy methyl alkanoate compositions in Proboscia diatoms: results from culture and field studies. Org Geochem 40:1124

    CAS  Google Scholar 

  244. Nichols PD, Johns RB (1986) The lipid chemistry of sediments from the St. Lawrence estuary. Acyclic unsaturated long chain ketones, diols and ketone alcohols. Org Geochem 9:25

    CAS  Google Scholar 

  245. de Leeuw JW, Rijpstra C, Schenck PA (1981) The occurrence and identification of C30, C31 and C32 alkan-1,15-diols and alkan-15-one-1-ols in Unit I and Unit II Black Sea sediments. Geochim Cosmochim Acta 45:2281

    Google Scholar 

  246. Versteegh GJM, Bosch H-J, de Leeuw JW (1997) Potential palaeoenvironmental information of C24 to C36 mid-chain diols, keto-ols and mid-chain hydroxy fatty acids; a critical review. Org Geochem 27:1

    CAS  Google Scholar 

  247. Rolfes J, Andersson JT (2001) Determination of alkylphenols after derivatization to ferrocenecarboxylic acid esters with gas chromatography-atomic emission detection. Anal Chem 73:3073

    PubMed  CAS  Google Scholar 

  248. Larter SR, Bowler BFJ, Li M, Chen M, Brincat D, Bennett B, Noke K, Donohoe P, Simmons D, Kohnen M, Telnaes N, Horstad I (1996) Molecular indicators of secondary oil migration distances. Nature 383:593

    CAS  Google Scholar 

  249. Taylor P, Bennett B, Jones M, Larter S (2001) The effect of biodegradation and water washing on the occurrence of alkylphenols in crude oils. Org Geochem 32:341

    CAS  Google Scholar 

  250. Simoneit BRT, Otto A, Wilde V (2003) Novel biomarker triterpenoids of fossil laticifers in Eocene brown coal from Geiseltal, Germany. Org Geochem 34:121

    CAS  Google Scholar 

  251. Otto A, White JD, Simoneit BRT (2002) Natural product terpenoids in Eocene and Miocene conifer fossils. Science 297:1543

    PubMed  CAS  Google Scholar 

  252. Wünsche L, Mendoza YA, Gülaçar (1988) Lipid geochemistry of a post-glacial lacustrine sediment. Org Geochem 13:1131

    Google Scholar 

  253. Marlowe IT, Green JC, Neal AC, Brassell SC, Eglinton G, Course PA (1984) Long chain (n-C37–C39) alkenones in the Prymnesiophyceae. Distribution of alkenones and other lipids and their taxonomic significance. Br Phycol J 19:203

    Google Scholar 

  254. Rontani J-F, Prahl FG, Volkman JK (2006) Re-examination of the double bond positions in alkenones and derivatives: biosynthetic implications. J Phycol 42:800

    CAS  Google Scholar 

  255. de Leeuw JW, van der Meer FW, Rijpstra WIC, Schenck PA (1980) On the occurrence and structural identification of long chain unsaturated ketones and hydrocarbons in sediments. Phys Chem Earth 12:211

    Google Scholar 

  256. Brassell SC, Dumitrescu M, ODP Leg 198 Shipboard Scientific Party (2004) Recognition of alkenones in a Lower Aptian porcellanite from the west-central Pacific. Org Geochem 35:181

    CAS  Google Scholar 

  257. Ono M, Sawada K, Kubota M, Shiraiwa Y (2009) Change of the unsaturation degree of alkenone and alkenoate during acclimation to salinity change in Emiliana huxleyi and Gephyrocapsa oceanica with reference to palaeosalinity indicator. Res Org Geochem 25:53

    Google Scholar 

  258. Prahl FG, Wakeham SG (1987) Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature 330:367

    CAS  Google Scholar 

  259. Müller PJ, Kirst G, Ruhland G, von Storch I, Rosell-Melé A (1998) Calibration of the alkenone palaeotemperature index based on core-tops from the eastern South Atlantic and the global ocean (60°N–60°S). Geochim Cosmochim Acta 62:1757

    Google Scholar 

  260. Herbert TD (2006) Alkenones as palaeotemperature indicators. In: Elderfield H (ed) The oceans and marine geochemistry, volume 6, Holland HD, Turekian KK (eds) Treatise on geochemistry. Elsevier, Amsterdam, p 391

    Google Scholar 

  261. Epstein BL, D’Hondt S, Hargraves PE (2001) The possible metabolic role of C37 alkenones in Emiliana huxleyi. Org Geochem 32:867

    CAS  Google Scholar 

  262. Rieseberg LH, Soltis DE (1987) Flavonoids of fossil Miocene Platanus and its extant relatives. Biochem Syst Ecol 15:109

    Google Scholar 

  263. Giannasi DE, Niklas KJ (1981) Comparative paleobiochemistry of some fossil and extant Fagaceae. Am J Bot 68:762

    CAS  Google Scholar 

  264. Niklas KJ, Giannasi DE, Baghai NL (1985) Paleobiochemistry of North American fossil Liriodendron sp. Biochem Syst Ecol 13:1

    CAS  Google Scholar 

  265. Zhao Y-X, Li C-S, Luo X-D, Wang Y-F, Zhou J (2006) Palaeophytochemical constituents of Cretaceous Ginkgo coriacea Florin leaves. J Integr Plant Biol 48:983

    CAS  Google Scholar 

  266. Oftedahl I (1929) Minerals from the burning coal seam at Mt. Pyramide, Spitsbergen. In: Hoel A (ed) Det norske Videnskaps–Akademi i Oslo, Resultater av de norske statunderstøttede Spitsbergenekspeditioner (Skrifter om Svalbard og Ishavet) 1:9

    Google Scholar 

  267. http://www.mindat.org/min-1915.html

  268. Záček V, Oplustil S, Mayova A, Meyer FR (1995) Die Mineralien von Kladno in Mittelböhmen, Tschechische Republik. Min Welt 6:13

    Google Scholar 

  269. Jirásek J (2001) Thermal changes of the rocks in the dump pile of the Kateňna Colliery in Radvanice (Eastern Bohemi) Ostrava VSB Technical University of Ostrava. Inst Geol Eng 541:69

    Google Scholar 

  270. Thalheim K, Reichel W, Witzke T (1991) Die Minerale des Döhlener Beckens. Schriften des Museums für Mineralogie und Geologie zu Dresden, Nr 3

    Google Scholar 

  271. Treibs A, Steinmetz H (1933) Über das Vorkommen von Anthrachinon-Farbstoffen im Mineralreich (Graebeït). Ann Chem 506:171

    CAS  Google Scholar 

  272. Kolbeck F (1934) Ueber das Vorkommen von Anthrachinon-Farbstoffen bei der Gewerkschaft “Gottes Segen” in Oelsnitz (Erzg.). Jb Berg u Hüttenw in Sachsen 108:15

    Google Scholar 

  273. Hoffmann-Ostenhof O (1950) Vorkommen und biochemisches Verhalten der Chinone. Prog Chem Org Nat Prod 6:154

    CAS  Google Scholar 

  274. Otto A, Simoneit BRT, Rember WC (2003) Resin compounds from the seed cones of three fossil conifer species from the Miocene Clarkia flora, Emerald Creek, Idaho, USA, and from related extant species. Rev Palaeobot Palyn 126:225

    Google Scholar 

  275. Blumer M (1951) Fossile Kohlenwasserstoffe und Farbstoffe in Kalksteinen (Geochemische Untersuchungen III.). Mikrochemie 36:1048

    Google Scholar 

  276. Blumer M (1960) Pigments of a fossil echinoderm. Nature 188:1100

    CAS  Google Scholar 

  277. Blumer M (1962) The organic chemistry of a fossil − I. The structure of the fringelite-pigments. Geochim Cosmochim Acta 26:225

    CAS  Google Scholar 

  278. Blumer M (1965) Organic pigments: their long-term fate. Science 149:722

    PubMed  CAS  Google Scholar 

  279. Parkinson J (1808) Organic remains of a former world, vol 2. Sherwood, Neely & Jones, London

    Google Scholar 

  280. Bather FA (1893) The Crinoidea of Gotland. Part I. The Crinoidea Inadunata. PA Nostedt & Söner, Stockholm

    Google Scholar 

  281. Jaekel O (1894) Platte mit Encrinus carnalli. Sitz Ber Ges Naturforsch Fr Berlin 155

    Google Scholar 

  282. Biese W (1927) Über die Encriniten des unteren Muschelkalkes von Mitteldeutschland. Abh Preuß Geol Landesanst, N F 103:1

    Google Scholar 

  283. Falk H, Mayr E, Richter AE (1994) Simple diffuse reflectance UV-vis spectroscopic determination of organic pigments (fringelites) in fossils. Microchim Acta 117:1

    CAS  Google Scholar 

  284. Falk H, Mayr E (1995) Synthesis and properties of fringelite D (1,3,4,6,8,10,13-octahydroxy-phenanthro[1,10,9,8, opqra]perylene-7,14-dione). Monatsh Chem 125:699

    Google Scholar 

  285. Wolkenstein K, Gross JH, Falk H, Schöler HF (2006) Preservation of hypericin and related polycyclic quinone pigments in fossil crinoids. Proc R Soc B 273:451

    PubMed  CAS  Google Scholar 

  286. Wolkenstein K, Głuchowski E, Gross JH, Marynowski L (2008) Hypericinoid pigments in Millericrinids from the Kimmeridgian of the Holy Cross mountains (Poland). Palaios 23:773

    Google Scholar 

  287. Blumer M (1962) The organic chemistry of a fossil − II. Some rare polynuclear hydrocarbons. Geochim Cosmochim Acta 26:228

    CAS  Google Scholar 

  288. Thomas DW, Blumer M (1964) The organic chemistry of a fossil − III. The hydrocarbons and their geochemistry. Geochim Cosmochim Acta 28:1467

    CAS  Google Scholar 

  289. Wolkenstein K (2015) Persistent and widespread occurrence of bioactive quinone pigments during post-Paleozoic crinoid diversification. Proc Natl Acad Sci USA 112:2794

    PubMed  CAS  Google Scholar 

  290. Falk H (1999) From the photosensitizer hypericin to the photoreceptor stentorin − the chemistry of phenanthroperylene quinones. Angew Chem Int Ed 38:3116

    CAS  Google Scholar 

  291. Leonhartsberger JG, Falk H (2002) The protonation and deprotonation equilibria of hypericin revisited. Monatsh Chem 133:167

    CAS  Google Scholar 

  292. Etzlstorfer C, Falk H, Müller N, Schmitzberger W, Wagner UG (1993) Tautomerism and stereochemistry of hypericin: force field, NMR, and X-ray crystallographic investigations. Monatsh Chem 124:751

    CAS  Google Scholar 

  293. Bais HP, Vepachedu R, Lawrence CB, Stermitz FR, Vivanco JM (2003) Molecular and biochemical characterization of an enzyme responsible for the formation of hypericin in St. John’s wort (Hypericum perforatum L.). J Biol Chem 278:32413

    PubMed  CAS  Google Scholar 

  294. Falk H, Schoppel G (1992) On the synthesis of hypericin by oxidative trimethylemodin anthrone and emodin anthrone dimerization: isohypericin. Monatsh Chem 123:931

    CAS  Google Scholar 

  295. De Riccardis F, Iorizzi M, Minale L, Riccio R, Richer de Forges B, Debitus C (1991) The gymnochromes: novel marine brominated phenanthroperylenequinone pigments from the stalked crinoid Gymnocrinus richeri. J Org Chem 56:6781

    Google Scholar 

  296. Kemami Wangun HV, Wood A, Fiorilla C, Reed JK, McCarthy PJ, Wright AE (2010) Gymnochromes E and F, cytotoxic phenanthroperylenequinones from a deep-water crinoid Holopus rangii. J Nat Prod 73:712

    PubMed  PubMed Central  CAS  Google Scholar 

  297. O’Malley CE, Ausich WI, Chin Y-P (2013) Isolation and characterization of the earliest taxon-specific organic molecules (Mississippian, Crinoidea). Geology 41:347

    Google Scholar 

  298. Wolkenstein K (2014) Isolation and characterization of the earliest taxon-specific organic molecules (Mississippian, Crinoidea). Comment and author reply. Geology 42:e320, e322

    CAS  Google Scholar 

  299. Gribble GW (2010) Naturally occurring organohalogen compounds − a comprehensive update. Prog Chem Org Nat Prod 91:1

    CAS  Google Scholar 

  300. Falk H, Mayr E (1997) Concerning bay salt and peri chelate formation of hydroxyphenanthroperylene quinones (fringelites). Monatsh Chem 128:353

    CAS  Google Scholar 

  301. Lemoine P (1927) Solenopora from the Jurassic of France. Bull Soc Géol Fr 27:405

    Google Scholar 

  302. Harland TL, Torrens HS (1982) A redescription of the Bathonian red alga Solenopora jurassica from Gloucestershire, with remarks on its preservation. Palaeontology 25:905

    Google Scholar 

  303. Wright VP (1985) Seasonal banding in the alga Solenopora jurassica from Middle Jurassic of Gloucestershire, England. J Palaeontol 59:721

    Google Scholar 

  304. Wolkenstein K, Gross JH, Falk H (2010) Boron-containing organic pigments from a Jurassic red alga. Proc Natl Acad Sci USA 107:19374

    PubMed  CAS  Google Scholar 

  305. Wolkenstein K, Sun H, Falk H, Griesinger C (2015) Structure and absolute configuration of Jurassic polyketide-derived spiroborate pigments obtained from microgram quantities. J Am Chem Soc 137:13460

    PubMed  CAS  Google Scholar 

  306. Pidot S, Ishida K, Cyrulies M, Hertweck C (2014) Discovery of clostrubin, an exceptional polyphenolic polyketide antibiotic from a strictly anaerobic bacterium. Angew Chem Int Ed 53:7856

    CAS  Google Scholar 

  307. Taylor TN, Taylor EL, Krings M (2009) Palaeobotany: the biology and evolution of fossil plants, 2nd edn. Academic Press, Amsterdam

    Google Scholar 

  308. Rezanka T, Sigler K (2008) Biologically active compounds of semi-metals. Phytochemistry 69:585

    PubMed  CAS  Google Scholar 

  309. Scorei R (2012) Is boron a prebiotic element? A mini-review of the essentiality of boron for the appearance of life on earth. Orig Life Evol Biosph 42:3

    PubMed  CAS  Google Scholar 

  310. Berthier MP (1825) Examen de las substance rose de Quincy (département du Cher). Ann Mines 10:272

    Google Scholar 

  311. http://www.gemmology.ch/quinciite.html

  312. Louis M, Guillemin CJ, Goni JC, Ragot JP (1969) Coloration rose-carmin d’une sépiolite Eocéne, la quincyite, par des pigments organiques. Adv Org Geochem:553

    Google Scholar 

  313. Brousse A (2012) La quinciite et l’opale associée des calcaires lacustres de la region du Quincy, Berry (Cher). Saga Inf 316:8

    Google Scholar 

  314. Treibs A, Wilhelm R, Jacob K (1981) Der Quincyte-Farbstoff. Ann Chem:842

    Google Scholar 

  315. Prowse WG, Arnot KI, Recka JA, Thomson RH, Maxwell JR (1991) The quincyte pigments: fossil quinones in an Eocene clay mineral. Tetrahedron 47:1095

    CAS  Google Scholar 

  316. Means JL, Hubbard N (1987) Short-chain aliphatic acid anions in deep surface brines: a review of their origin, occurrence, properties, and importance and new data on their distribution and geochemical implications in the Palo Duro Basin, Texas. Org Geochem 11:177

    CAS  Google Scholar 

  317. Barth T, Andresen B, Iden K, Johansen H (1997) Modelling source rock production potentials for short-chain organic acids and CO2 − a multivariate approach. Org Geochem 25:427

    Google Scholar 

  318. Dias RF, Freeman KH, Lewan MD, Franks SG (2002) δ13 of low-molecular-weight organic acids generated by the hydrous pyrolysis of oil-prone source rocks. Geochim Cosmochim Acta 66:2755

    CAS  Google Scholar 

  319. Huang Y, Lockheart MJ, Logan GA, Eglinton G (1996) Isotope and molecular evidence for the diverse origins of carboxylic acids in leaf fossils and sediments from the Miocene Lake Clarkia deposit, Idaho, USA. Org Geochem 24:289

    CAS  Google Scholar 

  320. Golumbic C, Hofer LJE, Peebles WC, Orchin M (1950) Detection of abietic acid in bituminous coal. J Soc Chem Ind 69:100

    CAS  Google Scholar 

  321. Seifert WK (1973) Steroid acids in petroleum − animal contribution to the origin of petroleum. Pure Appl Chem 34:633

    CAS  Google Scholar 

  322. Simoneit BRT, Xu Y, Neto RR, Cloutier JB, Jaffé R (2009) Photochemical alteration of 3-oxygenated triterpenoids: implications for the origin of 3,4-seco-triterpenoids in sediments. Chemosphere 74:543

    PubMed  CAS  Google Scholar 

  323. Boon JJ, de Lange F, Schuyl PJW, de Leeuw JW, Schenck PA (1977) Organic geochemistry of Walvis Bay diatomaceous ooze. II. Occurrence and significance of the hydroxy acids. Adv Org Geochem 1975:255

    Google Scholar 

  324. Skerratt JH, Nichols PD, Bowman JP, Sly LI (1992) Occurrence and significance of long-chain (ω-1)-hydroxy fatty acids in methane-utilizing bacteria. Org Geochem 18:189

    CAS  Google Scholar 

  325. Kvenvolden KA, Peterson E, Pollock GE (1969) Optical configuration of amino acids in pre-Cambrian fig tree chert. Nature 221:141

    CAS  Google Scholar 

  326. Kvenvolden KA, Lawless J, Pering K, Peterson E, Flores J, Ponnamperuma C, Kaplan IR, Moore C (1970) Evidence for extraterrestrial amino acids and hydrocarbons in the Murchinson meteorite. Nature 228:923

    PubMed  CAS  Google Scholar 

  327. Miller GH, Jull AJT, Linick T, Sutherland D, Sejrup HP, Brigham JK, Bowen DQ, Mangerud J (1987) Racemization-derived late Devensian temperature reduction in Scotland. Nature 326:593

    CAS  Google Scholar 

  328. Kimber RWL, Griffin CV (1987) Further evidence of the complexity of the racemization process in fossil shells with implication for amino acid racemization dating. Geochim Cosmochim Acta 51:839

    CAS  Google Scholar 

  329. Yamamoto S, Otto A, Krumbiegel G, Simoneit BRT (2006) The natural product biomarkers in succinite, glessite and stantienite ambers from Bitterfeld, Germany. Rev Palaeobot Palyn 140:27

    Google Scholar 

  330. Agricola G (2006) De natura Fossilium. Handbuch der Mineralogie (1546). Marix Verlag, Wiesbaden

    Google Scholar 

  331. Buchberger W, Falk H, Katzmayr MU, Richter AE (1997) On the chemistry of Baltic amber inclusion droplets. Monatsh Chem 128:177

    CAS  Google Scholar 

  332. Kieslich K (1985) Microbial side-chain degradation of sterols. J Basic Microbiol 25:461

    PubMed  CAS  Google Scholar 

  333. Szykuła J, Hebda C, Orpiszewski J, Aichholz R, Szynkiewicz A (1990) Studies on the neutral fraction of baltic amber. Prace Muzeum Ziemi 41:15

    Google Scholar 

  334. Niklas KJ, Giannasi DE (1978) Angiosperm paleobiochemistry of the Succor Creek Flora (Miocene) Oregon, USA. Am J Bot 65:943

    CAS  Google Scholar 

  335. Schuler B, Meyer G, Peña D, Mullins OC, Gross L (2015) Unraveling the molecular structures of asphaltenes by atomic force microscopy. J Am Chem Soc 137:9870

    PubMed  CAS  Google Scholar 

  336. Cleland TP, Schroeter ER, Zamdborg L, Zheng W, Lee JE, Tran JC, Bern M, Duncan MB, Lebleu VS, Ahlf DR, Thomas PM, Kalluri R, Kelleher NL, Schweitzer MH (2015) Mass spectrometry and antibody-based characterization of blood vessels from Brachylophosaurus canadensis. J Proteome Res 14:5252

    PubMed  PubMed Central  CAS  Google Scholar 

  337. Briggs DEG, Stankiewicz BA, Meischner D, Bierstedt A, Evershed RP (1998) Taphonomy of arthropod cuticles from Pliocene lake sediments, Willershausen, Germany. Palaios 13:386

    Google Scholar 

  338. Stankiewicz BA, Briggs DEG, Evershed RP, Flannery MB, Wuttke M (1997) Preservation of chitin in 25-million-year-old fossils. Science 276:1541

    CAS  Google Scholar 

  339. Carlisle DB (1964) Chitin in a Cambrian fossil, Hyolithellus. Biochem J 90:1C

    PubMed  CAS  Google Scholar 

  340. Ehrlich H, Rigby JK, Botting, JP, Tsurkan, MV, Werner C, Schwille, P, Petrášek Z, Pisera A, Simon P, Sivkov VN, Vyalikh DV, Molodtsov SL, Kurek D, Kammer M, Hunoldt S, Born R, Stawski D, Steinhof A, Bazhenov VV, Geisler T (2013) Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta. Sci Rep 3: Article number: 3497. doi:10.1038/srep03497

  341. Tegelaar EW, de Leeuw JW, Derenne S, Largeau C (1989) A reappraisal of kerogen formation. Geochim Cosmochim Acta 53:3103

    CAS  Google Scholar 

  342. van Krevelen DW (1950) Graphical-statistical method for the study of structure and reaction processes of coal. Fuel 29:269

    Google Scholar 

  343. Vávra N (2009) The chemistry of amber − facts, findings and opinions. Ann Naturhist Mus Wien 111A:445

    Google Scholar 

  344. Anderson KB, Winans RE, Botto RE (1992) The nature and fate of natural resins in the geosphere − II. Identification, classification and nomenclature of resinites. Org Geochem 18:829

    CAS  Google Scholar 

  345. Anderson KB (1994) The nature and fate of natural resins in the geosphere − IV. Middle and Upper Cretaceous amber from the Taimyr Peninsula, Siberia − evidence for a new form of polylabdanoid of resinite and revision of the classification of Class I resinites. Org Geochem 21:209

    CAS  Google Scholar 

  346. Poulin J, Helwig K (2014) Inside amber: the structural role of succinic acid in Class Ia and Class Id resinite. Anal Chem 86:7428

    PubMed  CAS  Google Scholar 

  347. Cunningham A, Gay ID, Oehlschlanger AC, Langenheim JH (1983) 13C NMR and IR analyses of the structure, aging and botanical origin of Dominican and Mexican ambers. Phytochemistry 22:965

    CAS  Google Scholar 

  348. Kosmowska-Ceranowicz B, Vávra N (2015) Infrared spectra of the World’s resins − holotype characteristics. Polska Akademia Nauk Muzeum Ziemi w Warszawie, Warszawa

    Google Scholar 

  349. Vinther J, Briggs DEG, Prum RO, Saranathan V (2008) The colour of fossil feathers. Biol Lett 4:522

    PubMed  PubMed Central  Google Scholar 

  350. Li Q, Gao K-Q, Vinther J, Shawkey MD, Clarke JA, D’Alba L, Meng Q, Briggs DEG, Miao L, Prum RO (2010) Plumage color patterns of an extinct dinosaur. Science 327:1369

    PubMed  CAS  Google Scholar 

  351. Glass K, Ito S, Wilby PR, Sota T, Nakamura A, Bowers CR, Vinther J, Dutta S, Summons R, Briggs DEG, Wakamatsu K, Simon JD (2012) Direct chemical evidence for eumelanin pigment from the Jurassic period. Proc Natl Acad Sci USA 109:10218

    PubMed  CAS  Google Scholar 

  352. Lindgren J, Sjovall P, Carney RM, Uvdal P, Gren JA, Dyke G, Schultz BP, Shawkey MD, Barnes KR, Polcyn MJ (2014) Skin pigmentation provides evidence of convergent melanism in extinct marine reptiles. Nature 506:484

    PubMed  CAS  Google Scholar 

  353. Colleary C, Dolocan A, Gardner J, Singh S, Wuttke M, Rabenstein R, Habersetzer J, Schaal S, Feseha M, Clemens M, Jacobs BF, Currano ED, Jacobs LL, Sylvestersen RL, Gabbott SE, Vinther J (2015) Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils. Proc Natl Acad Sci USA 112:12592

    PubMed  CAS  Google Scholar 

  354. Egli M, Saenger W (1984) Principles of nucleic acid structure. Springer, Heidelberg

    Google Scholar 

  355. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Meth Enzymol 155:335

    PubMed  CAS  Google Scholar 

  356. Pääbo S, Poinar H, Serre D, Jaenicke-Després V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645

    PubMed  Google Scholar 

  357. Allentoft ME, Collins M, Harker D, Haile J, Oskam CL, Hale ML, Campos PF, Samaniego JA, Gilbert MTP, Willerslev E, Zhang G, Scofield RP, Holdaway RN, Bunce M (2012) The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc R Soc B 279:4724

    PubMed  CAS  Google Scholar 

  358. Hänni C, Laudet V, Coll J, Stehlin D (1994) An unusual mitochondrial DNA sequence variant from an Egyptian mummy. Genomics 22:487

    PubMed  Google Scholar 

  359. Sawyer S, Renaud G, Viola B, Hublin J-J, Gansauge M-T, Shunkov MV, Derevianko AP, Prüfer K, Kelso J, Pääbo S (2015) Nuclear and mitochondrial DNA sequences from two Denisovan individuals. Proc Natl Acad Sci USA 112:15696

    PubMed  CAS  Google Scholar 

  360. Meyer M, Arsuaga J-L, de Filippo C, Nagel S, Aximu-Petri A, Nickel B, Martínez I, Gracia A, de Castro JMB, Carbonell E, Viola B, Kelso J, Prüfer K, Pääbo S (2016) Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531:504

    PubMed  CAS  Google Scholar 

  361. Keller A, Graefen A, Ball M, Matzas M, Boisguerin V, Maixner F, Leidinger P, Backes C, Khairat R, Forster M, Stade B, Franke A, Mayer J, Spangler J, McLaughlin S, Shah M, Lee C, Harkins TT, Sartori A, Moreno-Estrada A, Henn B, Sikora M, Semino O, Chiaroni J, Rootsi S, Myres NM, Cabrera VM, Underhill PA, Bustamante CD, Vigl EE, Samadelli M, Cipollini G, Haas J, Katus H, O’Connor BD, Carlson MRJ, Meder B, Blin N, Meese E, Pusch CM, Zink A (2012) New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nat Commun 3:698

    PubMed  Google Scholar 

  362. Oskam CL, Bunce M (2012) DNA extraction from fossil eggshell. Methods Mol Biol 840:65

    PubMed  CAS  Google Scholar 

  363. Palkopoulou E, Mallick S, Skoglund P, Enk J, Rohland N, Li H, Omrak A, Vartanyan S, Poinar H, Götherström A, Reich D, Dalén L (2015) Complete genomes reveal signatures of demographic and genetic declines in the wooly mammoth. Curr Biol 25:1395

    PubMed  PubMed Central  CAS  Google Scholar 

  364. Budzikiewicz H (2015) Mass spectrometry in natural product structure elucidation. Prog Chem Org Nat Prod 100:77

    PubMed  CAS  Google Scholar 

  365. Seifert WK, Moldowan JM, Demaison GJ (1984) Source correlation of biodegraded oils. Org Geochem 6:633

    CAS  Google Scholar 

  366. Reynolds WF, Mazzola EP (2015) Nuclear magnetic resonance in the structural elucidation of natural products. Prog Chem Org Nat Prod 100:223

    PubMed  CAS  Google Scholar 

  367. Marshall AO, Wehrbein RL, Lieberman BS, Marshall CP (2012) Raman spectroscopic investigations of Burgess shale-type preservation: a new way forward. Palaios 27:288

    Google Scholar 

  368. Marshak S (2015) Essentials of geology, 5th edn. WW Norton, New York

    Google Scholar 

  369. Horsfield B, Rullkötter J (1994) Diagenesis, catagenesis, and metagenesis of organic matter. In: Magoon L, Dow WG (eds) The petroleum system—from source to trap. Am Assoc Petrol Geol Spec M60:189

    Google Scholar 

  370. Dahl JEP, Moldowan JM, Peters KE, Claypool GE, Rooney MA, Michael GE, Mello MR, Kohnen ML (1999) Diamondoid hydrocarbons as indicators of natural oil cracking. Nature 399:54

    CAS  Google Scholar 

  371. Dahl JEP, Moldowan JM, Peakman TM, Clardy JC, Lobkovsky E, Olmstead MM, May PW, Davis TJ, Steeds JW, Peters KE, Pepper A, Ekuan A, Carlson RMK (2003) Isolation and structural proof of the large diamond molecule, cyclohexamantane (C26H30). Angew Chem Int Ed 42:2040

    CAS  Google Scholar 

  372. Melezhik VA, Filippov MM, Romashkin AE (2004) A giant palaeoproterozoic deposit of shungite in NW Russia: genesis and practical applications. Ore Geol Rev 24:135

    Google Scholar 

  373. Buseck PR (2002) Geological fullerenes: review and analysis. Earth Planet Sci Lett 203:781

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Vera Hammer (head of the Mineral Collection of the Museum of Natural History, Vienna, Austria) for her assistance with organic minerals, ambers, and their photographs, to Prof. Norbert Vávra (University Vienna) for “amber help”, to Dr. Melinda Mayer, Kathryn Cross (Inst. of Food Res., Norwich, UK), and Dr. Benjamin Stegmann (University of Ulm), Dr. Mercedes di Pasquo (National Research Council of Argentinia, Laboratorio de Palinología y Paleobotánica, Entre Rios, Argentina), Michael Plewka (Gevelsberg, Germany, plingfactory.de), Richard Robinson (Underwater Photographer, Auckland, New Zealand, www.depth.co.nz), Dr. Jeremy R. Young (UCL, London, UK), and Dr. Klaus Wenderoth (Ebsdorfergrund, Germany) for permission to use their photographs as indicated in the respective Figures. We are also grateful to Dr. Christoph Etzlstorfer (JKU, Linz) for his help with computations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heinz Falk or Klaus Wolkenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Falk, H., Wolkenstein, K. (2017). Natural Product Molecular Fossils. In: Kinghorn, A.D., Falk, H., Gibbons, S., Kobayashi, J. (eds) Progress in the Chemistry of Organic Natural Products. Progress in the Chemistry of Organic Natural Products, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-319-45618-8_1

Download citation

Publish with us

Policies and ethics