Skip to main content

Embedded Passives

  • Chapter
  • First Online:
Materials for Advanced Packaging

Abstract

Emerging portable smart devices with more functionality demands high-performance, smaller, lighter, thinner, and cheaper electronic components. This is enabled by the transformation of today’s surface-mounted discrete passives such as resistors, capacitors, and inductors as thin films embedded in the package substrate or buildup layers. Such a trend would lead to miniaturized and more efficient power systems.

This chapter reviews the fundamentals of materials, designs, and processes for each of these thin-film passive component technologies, particularly focusing on power applications. It then describes the challenges and recent advances in each of these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mathúna CÓ, Wang N, Kulkarni S, Roy S (2012) Review of integrated magnetics for power supply on chip (PwrSoC). IEEE Trans Power Electron 27:4799–4816

    Article  Google Scholar 

  2. Gandhi S (2015) Modeling, design, fabrication and demonstration of 3D IPAC glass power modules. http://www.ti.com/lit/ug/slib006/slib006.pdf

  3. Hammarlund P, Martinez AJ, Bajwa A, Hill DL, Hallnor E, Jiang H et al (2013) 4th generation Intel core processor, codenamed haswell. In: Hot chips

    Google Scholar 

  4. Iyer MD (2013) Semeiconductor packaging trends and materials challenges. Additional Papers Presentations 2013:000310–000333

    Google Scholar 

  5. Neeb C, Boettcher L, Conrad M, De Doncker RW (2014) Innovative and reliable power modules: a future trend and evolution of technologies. IEEE Ind Electron Mag 8:6–16

    Article  Google Scholar 

  6. Raj PM, Jow U-M, Dai J, Murali K, Sharma H, Mishra D et al (2013) 3D IPAC—a new passives and actives concept for ultra-miniaturized electronic and bioelectronic functional modules. In: 2013 I.E. 63rd electronic components and technology conference (ECTC), pp 517–522

    Google Scholar 

  7. Andersen TM, Krismer F, Kolar JW, Toifl T, Menolfi C, Kull L et al (2013) A 4.6 W/mm 2 power density 86% efficiency on-chip switched capacitor DC-DC converter in 32 nm SOI CMOS. In: 2013 twenty-eighth annual IEEE applied power electronics conference and exposition (APEC), pp 692–699

    Google Scholar 

  8. Burton EA, Schrom G, Paillet F, Douglas J, Lambert WJ, Radhakrishnan K et al (2014) FIVR—fully integrated voltage regulators on 4th generation Intel® Core™ SoCs. In: 2014 twenty-ninth annual IEEE applied power electronics conference and exposition (APEC), pp 432–439

    Google Scholar 

  9. Kar M, Carlo S, Krishnamurthy HK, Mukhopadhyay S (2014) Impact of process variation in inductive integrated voltage regulator on delay and power of digital circuits. In: Proceedings of the 2014 international symposium on Low power electronics and design, pp 227–232

    Google Scholar 

  10. Frommberger M, Schmutz C, Tewes M, McCord J, Hartung W, Losehand R et al (2005) Integration of crossed anisotropy magnetic core into toroidal thin-film inductors. IEEE Trans Microwave Theory Tech 53:2096–2100

    Article  Google Scholar 

  11. Kawano K, Arai T, Hachiya M, Takahashi O, Oyama K (2015) Multilayer power choke inductor with metal powder. In: 2015 I.E. magnetics conference (INTERMAG), p 1

    Google Scholar 

  12. Yue CP, Ryu C, Lau J, Lee TH, Wong SS (1996) A physical model for planar spiral inductors on silicon. In: International electron devices meeting, 1996, IEDM ‵96., pp 155–158

    Google Scholar 

  13. Mohan SS, Yue CP, Hershenson MdM, Wong SS, Lee TH (1998) Modeling and characterization of on-chip transformers. In: International electron devices meeting, 1998, IEDM ‵98, Technical Digest., pp 531–534

    Google Scholar 

  14. Mohan SS, Hershenson MM, Boyd SP, Lee TH (1999) Simple accurate expressions for planar spiral inductances. IEEE J Solid State Circuits 34:1419–1424

    Article  Google Scholar 

  15. Lee TH (2003) The design of CMOS radio-frequency integrated circuits, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  16. Soohoo R (1979) Magnetic thin film inductors for integrated circuit applications. IEEE Trans Magn 15:1803–1805

    Article  Google Scholar 

  17. Gardner DS, Schrom G, Hazucha P, Paillet F, Karnik T, Borkar S (2007) Integrated on-chip inductors with magnetic films. IEEE Trans Magn 43:2615–2617

    Article  Google Scholar 

  18. Prabhakaran S, Sullivan CR, Venkatachalam K (2003) Measured electrical performance of V-groove inductors for microprocessor power delivery. IEEE Trans Magn 39:3190–3192

    Article  Google Scholar 

  19. Crawford AM, Gardner D, Wang SX (2002) High-frequency microinductors with amorphous magnetic ground planes. IEEE Trans Magn 38:3168–3170

    Article  Google Scholar 

  20. Viala B, Couderc S, Royet AS, Ancey P, Bouche G (2005) Bidirectional ferromagnetic spiral inductors using single deposition. IEEE Trans Magn 41:3544–3549

    Article  Google Scholar 

  21. Wang N, O’Donnell T, Roy S, McCloskey P, O’Mathuna C (2007) Micro-inductors integrated on silicon for power supply on chip. J Magn Magn Mater 316:e233–e237

    Article  Google Scholar 

  22. Yan Z, Rejaei B, Boellaard E, Vroubel M, Burghartz JN (2003) Integrated solenoid inductors with patterned, sputter-deposited Cr/Fe/sub 10/Co/sub 90//Cr ferromagnetic cores. IEEE Electron Device Lett 24:224–226

    Article  Google Scholar 

  23. Lee DW, Hwang KP, Wang SX (2008) Fabrication and analysis of high-performance integrated solenoid inductor with magnetic core. IEEE Trans Magn 44:4089–4095

    Article  Google Scholar 

  24. Kittel C (1996) Introduction to solid state physics, 7th edn. Wiley, New York

    MATH  Google Scholar 

  25. O’Handley R (1999) Modern magnetic materials: principles and applications. Wiley, New York

    Google Scholar 

  26. van de Riet E, Roozeboom F (1997) Ferromagnetic resonance and eddy currents in high-permeable thin films. J Appl Phys 81:350–354

    Article  Google Scholar 

  27. Lee DW, Wang SX (2006) Multiple magnetic resonances in permeability spectra of thick CoTaZr films. J Appl Phys 99:08F109

    Article  Google Scholar 

  28. Yamaguchi M, Baba M, Arai KI (2001) Sandwich-type ferromagnetic RF integrated inductor. IEEE Trans Microwave Theory Tech 49:2331–2335

    Article  Google Scholar 

  29. Shirakawa K, Kurata H, Kasuya M, Ohnuma S, Toryu J, Murakami K (1993) Thin film inductor with multilayer magnetic core. IEEE Transl J Magn Jpn 8:169–176

    Article  Google Scholar 

  30. Kurata H, Shirakawa K, Nakazima O, Murakami K (1994) Solenoid-type thin-film micro-transformer. IEEE Transl J Magn Jpn 9:90–94

    Article  Google Scholar 

  31. Li L, Crawford AM, Wang SX, Marshal AF, Mao M, Schneider T et al (2005) Soft magnetic granular material Co–Fe–Hf–O for micromagnetic device applications. J Appl Phys 97:10F907

    Article  Google Scholar 

  32. Shimada Y, Yamaguchi M, Ohnuma S, Itoh T, Wei Dong L, Ikeda S et al (2003) Granular thin films with high RF permeability. IEEE Trans Magn 39:3052–3056

    Article  Google Scholar 

  33. Li L (2007) Nanogranular soft magnetic material and on-package integrated inductors. Ph.D. thesis, Stanford University, Stanford

    Google Scholar 

  34. Sun NX, Wang SX, Silva TJ, Kos AB (2002) High-frequency behavior and damping of Fe-Co-N-based high-saturation soft magnetic films. IEEE Trans Magn 38:146–150

    Article  Google Scholar 

  35. Ikeda K, Kobayashi K, Fujimoto M (2002) Multilayer nanogranular magnetic thin films for GHz applications. J Appl Phys 92:5395–5400

    Article  Google Scholar 

  36. Ohnuma S, Kobayashi N, Masumoto T, Mitani S, Fujimori H (1999) Magnetostriction and soft magnetic properties of (Co1 − xFex)–Al–O granular films with high electrical resistivity. J Appl Phys 85:4574–4576

    Article  Google Scholar 

  37. Thompson M (1999) Inductance calculation techniques—Part II: approximations and handbook methods. Power Control Intell Motion 25(12):40–50

    Google Scholar 

  38. Li L, Lee DW, Wang SX, Hwang KP, Min Y, Mao M et al (2007) Tensor nature of permeability and its effects in inductive magnetic devices. IEEE Trans Magn 43:2373–2375

    Article  Google Scholar 

  39. Ansoft Corp. (2007) Ansoft student licensing program. Ansoft Corp., Pittsburgh

    Google Scholar 

  40. Lee DW, Wang SX (2008) Effects of geometries on permeability spectra of CoTaZr magnetic cores for high frequency applications. J Appl Phys 103:07E907

    Article  Google Scholar 

  41. Chen DX, Pardo E, Sanchez A (2002) Demagnetizing factors of rectangular prisms and ellipsoids. IEEE Trans Magn 38:1742–1752

    Article  Google Scholar 

  42. Chen DX, Pardo E, Sanchez A (2005) Demagnetizing factors for rectangular prisms. IEEE Trans Magn 41:2077–2088

    Article  Google Scholar 

  43. van de Riet E, Klaassens W, Roozeboom F (1997) On the origin of the uniaxial anisotropy in nanocrystalline soft-magnetic materials. J Appl Phys 81:806–814

    Article  Google Scholar 

  44. Li L, Wang SX, Hwang K-P, Min Y, Mao M, Schneider T et al (2006) Package compatibility and substrate dependence of granular soft magnetic material CoFeHfO developed by reactive sputtering. J Appl Phys 99:08M301

    Article  Google Scholar 

  45. Li M, Wang G-C, Min H-G (1998) Effect of surface roughness on magnetic properties of Co films on plasma-etched Si(100) substrates. J Appl Phys 83:5313–5320

    Article  Google Scholar 

  46. Harrington RF (1961) Time-harmonic electromagnetic fields. McGraw-Hill, New York

    Google Scholar 

  47. Dok Won L, Kyu-Pyung H, Wang SX (2008) Design and fabrication of integrated solenoid inductors with magnetic cores. In: 2008 58th electronic components and technology conference, pp 701–705

    Google Scholar 

  48. Brandon EJ, Wesseling EE, Vincent C, Kuhn WB (2003) Printed microinductors on flexible substrates for power applications. IEEE Trans Compon Packag Technol 26:517–523

    Article  Google Scholar 

  49. Waffenschmidt E, Ackermann B, Wille M (2005) Integrated ultra thin flexible inductors for low power converters. In: 2005 I.E. 36th power electronics specialists conference, pp 1528–1534

    Google Scholar 

  50. Sato F, Ono T, Wako N, Arai S, Ichinose T, Oba Y et al (2004) All-in-one package ultracompact micropower module using thin-film inductor. IEEE Trans Magn 40:2029–2031

    Article  Google Scholar 

  51. Li L, Lee DW, Hwang KP, Min Y, Hizume T, Tanaka M et al (2009) Small-resistance and high-quality-factor magnetic integrated inductors on PCB. IEEE Trans Adv Packag 32:780–787

    Article  Google Scholar 

  52. Kim CH, Kwon YS (2012) Thick-copper-buried inductors using anodized aluminum package substrates. IEEE Trans Compon Packag Manuf Technol 2:1260–1264

    Article  Google Scholar 

  53. Li L, Lee DW, Mao M, Schneider T, Bubber R, Hwang K-P et al (2007) High-frequency responses of granular CoFeHfO and amorphous CoZrTa magnetic materials. J Appl Phys 101:123912

    Article  Google Scholar 

  54. Ghahary A (2004) Fully integrated DC-DC converters. Power electronics technology. pp 24–27

    Google Scholar 

  55. Gardner DS, Schrom G, Paillet F, Jamieson B, Karnik T, Borkar S (2009) Review of on-chip inductor structures with magnetic films. IEEE Trans Magn 45:4760–4766

    Article  Google Scholar 

  56. The contents of the paper from the following IEEJ Journal referred in this publication: Sato T, Yamasawa K, Tomita H, Inoue T, Mizoguchi T (2001) FeCoBN magnetic thin film inductor for MHz switching micro DC-DC converters. IEEJ Trans Ind Appl 121:84–89

    Google Scholar 

  57. Jin-Woo P, Allen MG (2003) Ultralow-profile micromachined power inductors with highly laminated Ni/Fe cores: application to low-megahertz DC-DC converters. IEEE Trans Magn 39:3184–3186

    Article  Google Scholar 

  58. Orlando B, Hida R, Cuchet R, Audoin M, Viala B, Pellissier-Tanon D et al (2006) Low-resistance integrated toroidal inductor for power management. IEEE Trans Magn 42:3374–3376

    Article  Google Scholar 

  59. Gao Y, Zardareh SZ, Yang X, Nan TX, Zhou ZY, Onabajo M et al (2014) Significantly enhanced inductance and quality factor of GHz integrated magnetic solenoid inductors with FeGaB-Al2O3 multilayer films. IEEE Trans Electron Devices 61:1470–1476

    Article  Google Scholar 

  60. Fukuda Y, Inoue T, Mizoguchi T, Yatabe S, Tachi Y (2003) Planar inductor with ferrite layers for DC-DC converter. IEEE Trans Magn 39:2057–2061

    Article  Google Scholar 

  61. Kowase I, Sato T, Yamasawa K, Miura Y (2005) A planar inductor using Mn-Zn ferrite/polyimide composite thick film for low-Voltage and large-current DC-DC converter. IEEE Trans Magn 41:3991–3993

    Article  Google Scholar 

  62. Sugawa Y, Ishidate K, Sonehara M, Sato T (2013) Carbonyl-iron/epoxy composite magnetic core for planar power inductor used in package-level power grid. IEEE Trans Magn 49:4172–4175

    Article  Google Scholar 

  63. Sturcken N, Davies R, Wu H, Lekas M, Shepard K, Cheng KW et al (2015) Magnetic thin-film inductors for monolithic integration with CMOS. In: 2015 I.E. international electron devices meeting (IEDM), pp 11.4.1–11.4.4

    Google Scholar 

  64. Chakraborti P, Sharma H, Raj PM, Tummala R (2012) High-density capacitors with conformal high-k dielectrics on etched-metal foils. In: 2012 I.E. 62nd electronic components and technology conference (ECTC), pp 1640–1643

    Google Scholar 

  65. Chakraborti P, Sharma H, Pulugurtha MR, Tummala R (2015) XPS depth profiling and leakage properties of anodized titania dielectrics and their application in high-density capacitors. J Mater Sci 50:7600–7609

    Article  Google Scholar 

  66. Kim C-H, Park K-J, Yoon Y-J, Hong M-H, Hong J-O, Hur K-H (2008) Role of yttrium and magnesium in the formation of core-shell structure of BaTiO 3 grains in MLCC. J Eur Ceram Soc 28:1213–1219

    Article  Google Scholar 

  67. Makovec D, Samardžija Z, Drofenik M (2004) Solid solubility of holmium, yttrium, and dysprosium in BaTiO3. J Am Ceram Soc 87:1324–1329

    Article  Google Scholar 

  68. Lohrengel M, Haas H, Rataj K, Schnitter C (2013) Oxide Films on sintered tantalum for electrolytic capacitors. J Electrochem Plating Tech 10:12850

    Google Scholar 

  69. Li Q (2013) Titanium dioxide dielectric layers made by anodization of titanium: the effect of dissolved nitrogen and oxygen. Case Western Reserve University

    Google Scholar 

  70. Aladjem A (1973) Anodic oxidation of titanium and its alloys. J Mater Sci 8:688–704

    Article  Google Scholar 

  71. Gleaves G, Dearnaley G, Collins R (1986) A phenomenological model for the anodization of titanium. Thin Solid Films 135:L5–L8

    Article  Google Scholar 

  72. Habazaki H, Uozumi M, Konno H, Shimizu K, Nagata S, Asami K et al (2002) Influence of molybdenum species on growth of anodic titania. Electrochim Acta 47:3837–3845

    Article  Google Scholar 

  73. Habazaki H, Uozumi M, Konno H, Shimizu K, Skeldon P, Thompson G (2003) Crystallization of anodic titania on titanium and its alloys. Corros Sci 45:2063–2073

    Article  Google Scholar 

  74. Gerritsen E, Emonet N, Caillat C, Jourdan N, Piazza M, Fraboulet D et al (2005) Evolution of materials technology for stacked-capacitors in 65nm embedded-DRAM. Solid State Electron 49:1767–1775

    Article  Google Scholar 

  75. Lutzen J, Birner A, Goldbach M, Gutsche M, Hecht T, Jakschik S et al (2002) Integration of capacitor for sub-100-nm DRAM trench technology. In: 2002 symposium on VLSI technology, 2002. Digest of technical papers, pp 178–179

    Google Scholar 

  76. Preisler E (1976) Semiconductor properties of manganese dioxide. J Appl Electrochem 6:311–320

    Article  Google Scholar 

  77. Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721

    Article  Google Scholar 

  78. Elschner A, Kirchmeyer S (2008) PEDOT‐type materials in organic solar cells. In: Organic photovoltaics, pp 211–242

    Google Scholar 

  79. Lee SH, Lee YB, Park DH, Kim MS, Cho EH, Joo J (2016) Tuning optical properties of poly (3-hexylthiophene) nanoparticles through hydrothermal processing. Sci Technol Adv Mater

    Google Scholar 

  80. Wan M (2008) Conducting polymers with micro or nanometer structure. Springer, Berlin

    Google Scholar 

  81. Larmat F, Reynolds JR, Qiu Y-J (1996) Polypyrrole as a solid electrolyte for tantalum capacitors. Synth Met 79:229–233

    Article  Google Scholar 

  82. Chakraborti P, Gandhi S, Sharma H, Raj P, Rataj K-P, Tummala R (2015) Demonstration of ultra-thin tantalum capacitors on silicon substrates for high-frequency and high-efficiency power applications. In: 2015 I.E. 65th electronic components and technology conference (ECTC), pp 2254–2258

    Google Scholar 

  83. Sadekar AG, Mohite D, Mulik S, Chandrasekaran N, Sotiriou-Leventis C, Leventis N (2012) Robust PEDOT films by covalent bonding to substrates using in tandem sol–gel, surface initiated free-radical and redox polymerization. J Mater Chem 22:100–108

    Article  Google Scholar 

  84. Sharma H, Sethi K, Raj PM, Tummala R (2012) Fabrication and characterization of novel silicon-compatible high-density capacitors. J Mater Sci Mater Electron 23:528–535

    Article  Google Scholar 

  85. Louwet F, Groenendaal L, Dhaen J, Manca J, Van Luppen J, Verdonck E et al (2003) PEDOT/PSS: synthesis, characterization, properties and applications. Synth Met 135:115–117

    Article  Google Scholar 

  86. Prymak J (2001) Improvements with polymer cathodes in aluminum and tantalum capacitors. In: Applied power electronics conference record, APEC, pp 1210–1218

    Google Scholar 

  87. Pulugurtha M, Fenner A, Malin A, Goud DJ, Tummala R (2011) Systems and methods for providing high-density capacitors. Google Patents

    Google Scholar 

  88. Kingon AI, Maria J-P, Streiffer S (2000) Alternative dielectrics to silicon dioxide for memory and logic devices. Nature 406:1032–1038

    Article  Google Scholar 

  89. Takano A, Sunohara M, Higashi M, Hayakawa I, Ohta K-i, Sasajima Y (2011) Development of Si interposer with low inductance decoupling capacitor. In: 2011 I.E. 61st electronic components and technology conference (ECTC), pp 849–854

    Google Scholar 

  90. Markondeya Raj P, Lee BW, Balaraman D, Kang NK, Lance MJ, Meyer H et al (2010) Hydrothermal barium titanate thin‐film characteristics and their suitability as decoupling capacitors. J Am Ceram Soc 93:2764–2770

    Article  Google Scholar 

  91. Muthana P, Engin AE, Swaminathan M, Tummala R, Sundaram V, Wiedenman B et al (2007) Design, modeling, and characterization of embedded capacitor networks for core decoupling in the package. IEEE Trans Adv Packag 30:809–822

    Article  Google Scholar 

  92. Wang Y, Xiang S, Pulugurtha MR, Sharma H, Williams B, Tummala R (2013) All-solution thin-film capacitors and their deposition in trench and through-via structures. IEEE Trans Compon Packag Manuf Technol 3:688–695

    Article  Google Scholar 

  93. Kim Y-H, Kim H-J, Osada M, Li B-W, Ebina Y, Sasaki T (2014) 2D Perovskite nanosheets with thermally-stable high-k response: a new platform for high-temperature capacitors. ACS Appl Mater Interfaces 6:19510–19514

    Article  Google Scholar 

  94. Klootwijk J, Jinesh K, Dekkers W, Verhoeven J, Van Den Heuvel F, Kim H-D et al (2008) Ultrahigh capacitance density for multiple ALD-grown MIM capacitor stacks in 3-D silicon. IEEE Electron Device Lett 29:740–742

    Article  Google Scholar 

  95. Hoogeland D, Jinesh K, Roozeboom F, Besling W, Van De Sanden M, Kessels W (2009) Plasma-assisted atomic layer deposition of TiN/Al 2 O 3 stacks for metal-oxide-semiconductor capacitor applications. J Appl Phys 106:114107

    Article  Google Scholar 

  96. Budnik M, Raychowdhury A, Bansal A, Roy K (2006) A high density, carbon nanotube capacitor for decoupling applications. In: Proceedings of the 43rd annual design automation conference, pp 935–938

    Google Scholar 

  97. Raj PM, Chakraborti P, Mishra D, Sharma H, Gandhi S, Sitaraman S et al (2015) Novel nanostructured passives for RF and power applications: nanopackaging with passive components. In: Nanopackaging: from nanomaterials to the atomic scale. Springer, pp 175–189

    Google Scholar 

  98. Banerjee P, Perez I, Henn-Lecordier L, Lee SB, Rubloff GW (2009) ALD based metal-insulator-metal (MIM) nanocapacitors for energy storage. ECS Trans 25:345–353

    Article  Google Scholar 

  99. Banerjee P, Perez I, Henn-Lecordier L, Lee SB, Rubloff GW (2009) Nanotubular metal–insulator–metal capacitor arrays for energy storage. Nat Nanotechnol 4:292–296

    Article  Google Scholar 

  100. Wang D, Wang Q, Javey A, Tu R, Dai H, Kim H et al (2003) Germanium nanowire field-effect transistors with SiO2 and high-k HfO2 gate dielectrics. Appl Phys Lett 83:2432–2434

    Article  Google Scholar 

  101. Miyazaki S (2001) Photoemission study of energy-band alignments and gap-state density distributions for high-k gate dielectrics. J Vac Sci Technol B 19:2212–2216

    Article  Google Scholar 

  102. Kittl J, Opsomer K, Popovici M, Menou N, Kaczer B, Wang X et al (2009) High-k dielectrics for future generation memory devices. Microelectron Eng 86:1789–1795

    Article  Google Scholar 

  103. Bhattacharya SK, Tummala RR (2000) Next generation integral passives: materials, processes, and integration of resistors and capacitors on PWB substrates. J Mater Sci Mater Electron 11:253–268

    Article  Google Scholar 

  104. Bird JM, Pfahl B (2005) System in package: identified technology needs from the 2004 iNEMI roadmap. Amkor Technology Inc. http://thor.inemi.org/webdownload/newsroom/apex2005/iNEMI_SiP_RoadmapJMB_paper.p df

  105. Halliday D, Resnick R, Walker J (1997) Fundamental of physics extended. Wiley, New York

    MATH  Google Scholar 

  106. Bhattacharya S (1996) Metal-filled polymers: properties and applications. Plast Eng 38:11

    Google Scholar 

  107. Ulrich RK, Schaper LW (2003) Integrated passive component technology. Wiley-IEEE Press, New York

    Book  Google Scholar 

  108. Yasujima N, Itokawa N, Arai J (1977) Method for manufacturing stable metal thin film resistors comprising sputtered alloy of tantalum and silicon and product resulting therefrom. Google Patents

    Google Scholar 

  109. Sinar AB, Gerzberg L, Shacham YY, Blech IA, Sirkin ER (1991) Programmable memory matrix employing voltage-variable resistors. Google Patents

    Google Scholar 

  110. Wang J, Clouser S (2001) Thin film embedded resistors. In: Proceedings of IPC Expo, pp S08–1

    Google Scholar 

  111. Croson EB (1976) Chromium-silicon oxide thin film resistors. Google Patents

    Google Scholar 

  112. Shibuya A, Matsui K, Takahashi K, Kawatani A (2001) Embedded TiNxOy thin-film resistors in a build-up CSP for 10 Gbps optical transmitter and receiver modules. In: Proceedings 51st electronic components and technology conference, 2001, pp 847–851

    Google Scholar 

  113. Jankowski AF, Hayes JP (2002) Ti–Cr–Al–O thin film resistors. Thin Solid Films 420:487–491

    Article  Google Scholar 

  114. Koiwa I, Usuda M, Osaka T (1988) Effect of heat‐treatment on the structure and resistivity of electroless Ni‐W‐P alloy films. J Electrochem Soc 135:1222–1228

    Article  Google Scholar 

  115. Rice JM, Mahler BP (1989) Electrodepositing nickel-phosphorous from a plating bath free of sulfate and chloride salt. Google Patents

    Google Scholar 

  116. Komuro H (1990) Liquid jet recording head with laminated heat resistive layers on a support member. Google Patents

    Google Scholar 

  117. Wasserman Y (1995) Integrated single-wafer RP solutions for 0.25-micron technologies. IEEE Trans-CPMT-A 17:346–351

    Google Scholar 

  118. Horst S, Anagnostou DE, Ponchak GE, Tentzeris E, Papapolymerou J (2007) Beam-shaping of planar array antennas using integrated attenuators. In: Proceedings 57th electronic components and technology conference, 2007. ECTC’07, pp 165–168

    Google Scholar 

  119. Horst S, Bairavasubramanian R, Tentzeris MM, Papapolymerou J (2007) Modified Wilkinson power dividers for millimeter-wave integrated circuits. IEEE Trans Microwave Theory Tech 55:2439–2446

    Article  Google Scholar 

  120. Horst S, Bhattacharya S, Johnston S, Tentzeris M, Papapolymerou J (2006) Modeling and characterization of thin film broadband resistors on LCP for RF applications. In: Proceedings 56th electronic components and technology conference, 2006, 5 pp

    Google Scholar 

  121. Wang J, Davis MK, Hilburn R, Clouser S (2003) Power dissipation of embedded resistors. Power 1:100

    Google Scholar 

  122. Coates K, Chien C-P, Hsiao Y-Y, Kovach D, Tang C-H, Tanielian M (1998) Development of thin film resistors for use in multichip modules. In: Proceedings 1998 international conference on multichip modules and high density packaging, 1998, pp 490–495

    Google Scholar 

  123. Aoki H (1991) Study of mass-production of low ohm metal-film resistors prepared by electroless plating. IEICE Trans Commun Electron Inf Syst 74:2049–2054

    Google Scholar 

  124. Bhattacharya SK, Varadarajan MG, Chahal P, Jha GC, Tummala RR (2007) A novel electroless process for embedding a thin film resistor on the benzocyclobutene dielectric. J Electron Mater 36:242–244

    Article  Google Scholar 

  125. Chahal P, Tummala RR, Allen MG, White GE (1998) Electroless Ni-P/Ni-WP thin-film resistors for MCM-L based technologies. In: 48th IEEE electronic components & technology conference, 1998, pp 232–239

    Google Scholar 

  126. Dhar S, Chakrabarti S (1996) Electroless Ni plating on n-and p-type porous Si for ohmic and rectifying contacts. Semicond Sci Technol 11:1231

    Article  Google Scholar 

  127. Lee KJ, Damani M, Pucha RV, Bhattacharya SK, Tummala RR, Sitaraman SK (2007) Reliability modeling and assessment of embedded capacitors in organic substrates. IEEE Trans Compon Packag Technol 30:152–162

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank National Science Foundation, Intel Corporation, and Stanford Graduate Fellowship (L. Li) for the financial support which made this work possible. Helpful collaborations with and previous work by A. M. Crawford, D. Gardner, G. Vandentop, H. Braunisch, R. Nair, K-P Hwang, Y. Min, M. Mao, T. Schneider, and R. Bubber, and a software license from Ansoft are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pulugurtha Markondeya Raj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Raj, P.M. et al. (2017). Embedded Passives. In: Lu, D., Wong, C. (eds) Materials for Advanced Packaging. Springer, Cham. https://doi.org/10.1007/978-3-319-45098-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45098-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45097-1

  • Online ISBN: 978-3-319-45098-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics