Skip to main content

Load Balancing and Fault Tolerance Mechanisms for Scalable and Reliable Big Data Analytics

  • Chapter
  • First Online:

Part of the book series: Computer Communications and Networks ((CCN))

Abstract

Data collection and analysis is rapidly changing the way scientific, national security and business communities operate. Data analytics applications, especially the ones involving graph analytics have received increased attention over the years. Moreover, with this increasing interest in graph processing, the diversity of the graph datasets and the graph processing algorithms has also increased. There has been a similar explosion in the design and development of the big data platforms to manage, store, process, and analyze large-scale graph datasets. Although these platforms have gained unquestionable success, it is currently difficult to decide on choosing a platform for deploying big data applications, due to a lack of comprehensive understanding of the performance and the design tradeoffs of these platforms in terms of handling both real-world workloads and resource failures. In this chapter, we will be surveying the load balancing and fault tolerance strategies employed by the most dominant graph database platforms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kambatla, K., Kollias, G., Kumar, V., Grama, A.: Trends in big data analytics. J. Parallel Distrib. Comput. 74(7), 2561–2573 (2014)

    Article  Google Scholar 

  2. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.: Distributed graphlab: a framework for machine learning and data mining in the cloud. Proc. VLDB Endowment 5(8), 716–727 (2012)

    Article  Google Scholar 

  3. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster computing with working sets. HotCloud 10, 10–10 (2010)

    Google Scholar 

  4. Cattell, R.: Scalable sql and nosql data stores. ACM SIGMOD Rec. 39(4), 12–27 (2011)

    Article  Google Scholar 

  5. Zikopoulos, P., Eaton, C., et al.: Understanding big data: Analytics for enterprise class hadoop and streaming data. McGraw-Hill Osborne Media (2011)

    Google Scholar 

  6. Tanenbaum, A.S., Van Steen, M.: Distributed systems: principles and paradigms, Vol. 2. Prentice hall Englewood Cliffs (2002)

    Google Scholar 

  7. Wang, P., Zhang, K., Chen, R., Chen, H., Guan, H.: Replication-based fault-tolerance for large-scale graph processing. In: 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 562–573. IEEE (2014)

    Google Scholar 

  8. Power, R., Li, J.: Piccolo: Building fast, distributed programs with partitioned tables. OSDI 10, 1–14 (2010)

    Google Scholar 

  9. Leavitt, N.: Will nosql databases live up to their promise? Computer 43(2), 12–14 (2010)

    Article  Google Scholar 

  10. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. ACM SIGACT News 33(2), 51–59 (2002)

    Article  Google Scholar 

  11. Titan: Titan graph database. http://thinkaurelius.github.io/titan/

  12. OrientDB: Orientdb graph database. http://orientdb.com/orientdb

  13. ArangoDB: Arangodb nosql database. https://www.arangodb.com/

  14. Giraph: Apache giraph. http://giraph.apache.org/

  15. Neo4j: Neo4j graph database. http://neo4j.com/

  16. Cassandra, A.: Apache Cassandra (2013)

    Google Scholar 

  17. Borthakur, D., Gray, J., Sarma, J.S., Muthukkaruppan, K., Spiegelberg, N., Kuang, H., Ranganathan, K., Molkov, D., Menon, A., Rash, S., et al.: Apache hadoop goes realtime at facebook. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of data, pp. 1071–1080. ACM (2011)

    Google Scholar 

  18. Oracle Berkeley, D.: Java edition (2008)

    Google Scholar 

  19. Dede, E., Sendir, B., Kuzlu, P., Hartog, J., Govindaraju, M.: An evaluation of cassandra for hadoop. In: 2013 IEEE Sixth International Conference on Cloud Computing, pp. 494–501. IEEE (2013)

    Google Scholar 

  20. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. ACM SIGOPS Operating Systems Review 44(2), 35–40 (2010)

    Article  Google Scholar 

  21. Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Schwarz, P.: Aries: a transaction recovery method supporting fine-granularity locking and partial rollbacks using write-ahead logging. ACM Transactions on Database Systems (TODS) 17(1), 94–162 (1992)

    Article  Google Scholar 

  22. Tesoriero, C.: Getting Started with OrientDB. Packt Publishing Ltd (2013)

    Google Scholar 

  23. Gray, J., Reuter, A.: Transaction Processing: Soncepts and Techniques. Elsevier (1992)

    Google Scholar 

  24. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, pp. 135–146. ACM (2010)

    Google Scholar 

  25. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8), 103–111 (1990)

    Article  Google Scholar 

  26. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), pp. 1–10. IEEE (2010)

    Google Scholar 

  27. Hunt, P., Konar, M., Junqueira, F.P., Reed, B.: Zookeeper: Wait-free coordination for internet-scale systems. In: USENIX Annual Technical Conference, Vol. 8, p. 9 (2010)

    Google Scholar 

  28. Khayyat, Z., Awara, K., Alonazi, A., Jamjoom, H., Williams, D., Kalnis, P.: Mizan: a system for dynamic load balancing in large-scale graph processing. In: Proceedings of the 8th ACM European Conference on Computer Systems, pp. 169–182. ACM (2013)

    Google Scholar 

  29. Sakr, S.: Processing large-scale graph data: A guide to current technology. IBM Developerworks, p. 15 (2013)

    Google Scholar 

  30. Schelter, S.: Large scale graph processing with apache giraph. Invited talk at GameDuell Berlin 29th May (2012)

    Google Scholar 

  31. ArangoDB: Arangodb white paper sharding. https://www.arangodb.com/documents/

  32. Store, R.K.V.: Reliable key-value store, etcd. https://coreos.com/etcd/docs/latest/

  33. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm. In: 2014 USENIX Annual Technical Conference (USENIX ATC 14), pp. 305–319 (2014)

    Google Scholar 

  34. Lamport, L., et al.: Paxos made simple. ACM Sigact News 32(4), 18–25 (2001)

    Google Scholar 

  35. Webber, J.: A programmatic introduction to neo4j. In: Proceedings of the 3rd Annual Conference on Systems, Programming, and Applications: Software for Humanity, pp. 217–218. ACM (2012)

    Google Scholar 

  36. Tarreau, W.: Haproxy-the reliable, high-performance tcp/http load balancer (2012)

    Google Scholar 

  37. Montag, D.: Understanding neo4j Scalability. White Paper, Neotechnology (2013)

    Google Scholar 

  38. Rao, J., Shekita, E.J., Tata, S.: Using paxos to build a scalable, consistent, and highly available datastore. Proc. VLDB Endowment 4(4), 243–254 (2011)

    Article  Google Scholar 

  39. Partner, J., Vukotic, A., Watt, N., Abedrabbo, T., Fox, D.: Neo4j in Action. Manning Publications Company (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Sukhija .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Sukhija, N., Morari, A., Banicescu, I. (2016). Load Balancing and Fault Tolerance Mechanisms for Scalable and Reliable Big Data Analytics. In: Pop, F., Kołodziej, J., Di Martino, B. (eds) Resource Management for Big Data Platforms. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-44881-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44881-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44880-0

  • Online ISBN: 978-3-319-44881-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics