Skip to main content

Lower Bounds for Key Length of k-wise Almost Independent Permutations and Certain Symmetric-Key Encryption Schemes

  • Conference paper
  • First Online:
Advances in Information and Computer Security (IWSEC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9836))

Included in the following conference series:

Abstract

The k-wise almost independent permutations are one of important primitives for cryptographic schemes and combinatorial constructions. Kaplan, Naor, and Reingold showed a general construction for k-wise almost independent permutations, and Kawachi, Takebe, and Tanaka provided symmetric-key encryption schemes that achieve multi-message approximate secrecy and multi-ciphertext approximate non-malleability based on Kaplan et al.’s construction. In this paper, we show lower bounds of key length for these constructions. In particular, they are nearly optimal for k-wise almost independent permutations and multi-message approximate secrecy if the approximation parameter is a constant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naor, M., Reingold, O.: On the construction of pseudorandom permutations: Luby-Rackoff revisited. J. Cryptol. 12(1), 29–66 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hoory, S., Magen, A., Myers, S., Rackoff, C.: Simple permutations mix well. Theor. Comput. Sci. 348(2–3), 251–261 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cameron, P.J.: Permutation groups. In: Graham, R.L., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, vol. 1, pp. 611–645. MIT Press, Cambridge (1995)

    Google Scholar 

  4. Kuperberg, G., Lovett, S., Peled, R.: Probabilistic existence of rigid combinatorial structures. In: Karloff, H.J., Pitassi, T. (eds.) STOC, pp. 1091–1106. ACM (2012)

    Google Scholar 

  5. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brodsky, A., Hoory, S.: Simple permutations mix even better. Random Struct. Algorithms 32(3), 274–289 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kaplan, E., Naor, M., Reingold, O.: Derandomized constructions of k-wise (almost) independent permutations. Algorithmica 55(1), 113–133 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kawachi, A., Takebe, H., Tanaka, K.: Symmetric-key encryption scheme with multi-ciphertext non-malleability. In: Hanaoka, G., Yamauchi, T. (eds.) IWSEC 2012. LNCS, vol. 7631, pp. 123–137. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Dodis, Y.: Shannon impossibility. In: Smith, A. (ed.) ICITS 2012. LNCS, vol. 7412, pp. 100–110. Springer, Heidelberg (2012). Revisited

    Chapter  Google Scholar 

  10. Shannon, C.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656–715 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kawachi, A., Portmann, C., Tanaka, K.: Characterization of the relations between information-theoretic non-malleability, secrecy, and authenticity. In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 6–24. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Hanaoka, G.: Some information theoretic arguments for encryption: non-malleability and chosen-ciphertext security (invited talk). In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 223–231. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Bierbrauer, J., Johansson, T., Kabatianskii, G.A., Smeets, B.J.M.: On families of hash functions via geometric codes and concatenation. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 331–342. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  14. Hanaoka, G., Shikata, J., Hanaoka, Y., Imai, H.: Unconditionally secure anonymous encryption and group authentication. Comput. J. 49(3), 310–321 (2006)

    Article  MATH  Google Scholar 

  15. McAven, L., Safavi-Naini, R., Yung, M.: Unconditionally secure encryption under strong attacks. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 427–439. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the JSPS Grant-in-Aid for Scientific Research (A) No.16H01705 and the ELC project (Grant-in-Aid for Scientific Research on Innovative Areas MEXT Japan, KAKENHI No. 24106009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinori Kawachi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kawachi, A., Takebe, H., Tanaka, K. (2016). Lower Bounds for Key Length of k-wise Almost Independent Permutations and Certain Symmetric-Key Encryption Schemes. In: Ogawa, K., Yoshioka, K. (eds) Advances in Information and Computer Security. IWSEC 2016. Lecture Notes in Computer Science(), vol 9836. Springer, Cham. https://doi.org/10.1007/978-3-319-44524-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44524-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44523-6

  • Online ISBN: 978-3-319-44524-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics