Skip to main content

Physiological Processes Contributing to the Synthesis of Ascorbic Acid in Plants

  • Chapter
  • First Online:
Book cover Redox State as a Central Regulator of Plant-Cell Stress Responses

Abstract

Ascorbic acid (AA) is present in high concentration in plant tissues and participates of many vital processes. Its biosynthetic pathway in plants has been recently established. Nowadays, research is focused on understanding the regulation of this pathway. One of the aspects is to unravel the importance of each enzyme through the establishment of limiting reactions and specific controlling processes. Interestingly, the synthesis of AA presents a high interaction with several physiological processes. The photosynthetic activity directly affects AA synthesis, and the last reaction of its formation takes place in mitochondria depending on the mitochondrial electron transport chain. In addition, it is now known how some plant hormones regulate this pathway. The incident light constitutes a key environmental factor controlling the synthesis of AA in plants. Light regulates the levels of several enzymes, but its effect on AA biosynthesis is also mediated through modifications in the previously mentioned physiological processes. The knowledge about the regulation of AA synthesis will allow the development of manipulative strategies leading to effectively increase the concentration of AA in edible plant organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agius F, Gonzalez-Lamothe R, Caballero JL, Munoz-Blanco J, Botella MA, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a d-galacturonic acid reductase. Nat Biotechnol 21:177–181

    Article  CAS  PubMed  Google Scholar 

  • Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17:2654–2965

    Article  Google Scholar 

  • Alhagdow M, Mounet F, Gilbert L, Nunes-Nesi A, Garcia V, Just D, Petit J, Beauvoit B, Fernie AR, Rothan C, Baldet P (2007) Silencing of the mitochondrial ascorbate synthesizing enzyme l-galactono-1,4-lactone dehydrogenase affects plant and fruit development in tomato. Plant Physiol 145:1408–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amaya I, Osorio S, Martinez-Ferri E, Lima-Silva V, Doblas VG, Fernández-Muñoz R, Fernie AR, Botella MA, Valpuesta V (2014) Increased antioxidant capacity in tomato by ectopic expression of the strawberry d-galacturonate reductase gene. Plant Biotech J 10:490–500

    Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annl Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  Google Scholar 

  • Badejo AA, Wada K, Gao Y, Maruta T, Sawa Y, Shigeoka S, Ishikawa T (2012) Translocation and the alternative d-galacturonate pathway contribute to increasing the ascorbate level in ripening tomato fruits together with the d-mannose/l-galactose pathway. J Exp Bot 63:229–239

    Article  CAS  PubMed  Google Scholar 

  • Baldet P, Bres C, Okabe Y, Mauxion JP, Just D, Bournonville C, Ferrand C, Mori K, Ezura H, Rothan C (2013) Investigating the role of vitamin C in tomato through TILLING identification of ascorbate-deficient tomato mutants. Plant Biotechnol 30:309–314

    Article  CAS  Google Scholar 

  • Barth C, De Tullio M, Conklin PL (2006) The role of ascorbic acid in the control of flowering time and the onset of senescence. J Exp Bot 57:1657–1665

    Article  CAS  PubMed  Google Scholar 

  • Bartoli CG, Pastori G, Foyer C (2000) Ascorbate biosynthesis in mitochondria is linked to the electron transport chain between complexes III and IV. Plant Physiol 123:335–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartoli CG, Simontacchi M, Montaldi E, Puntarulo S (1996) Oxidative stress, antioxidant capacity and ethylene production during ageing of cut carnation (Dianthus caryophyllus) petals. J Exp Bot 47:595–601

    Article  CAS  Google Scholar 

  • Bartoli CG, Simontacchi M, Montaldi E, Puntarulo S (1997) Oxidants and antioxidants during aging of chrysanthemum petals. Plant Sci 129:157–165

    Article  CAS  Google Scholar 

  • Bartoli CG, Tambussi EA, Fanello DD, Foyer CH (2009) Control of ascorbic acid synthesis and accumulation by the incident light red/far red ratio in Phaseolus vulgaris leaves. FEBS Lett 583:118–122

    Article  CAS  PubMed  Google Scholar 

  • Bartoli CG, Yu J, Gómez F, Fernández L, McIntosh L, Foyer CH (2006) Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. J Exp Bot 57:1621–1631

    Article  CAS  PubMed  Google Scholar 

  • Bulley SM, Rassam M, Hoser D, Otto W, Schünemann N, Wright M, MacRae E, Gleave A, Laing W (2009) Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-l-galactose guanyltransferase is a major control point of vitamin C biosynthesis. J Exp Bot 60:765–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulley SM, Wright M, Rommens C, Yan H, Rassam M, Lin-Wang K, Andre C, Brewster D, Karunairetnam S, Allan AC, Laing WA (2012) Enhancing ascorbate in fruits and tubers through over-expression of the l-galactose pathway gene GDP-l-galactose phosphorylase. Plant Biotech J 10:390–397

    Article  CAS  Google Scholar 

  • Charmet G (2011) Wheat domestication: lessons for the future. CR Biol 334:212–220

    Article  Google Scholar 

  • Chen Z, Young TE, Ling J, Chang SC, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Nat Acad Sci U S A 100:3525–3530

    Article  CAS  Google Scholar 

  • Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N, Last RL (1999) Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc Nat Acad Sci U S A 96:4198–4203

    Article  CAS  Google Scholar 

  • Conklin PL, Saracco SA, Norris SR, Last RL (2000) Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 154:847–856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conklin PL, DePaolo D, Wintle B, Schatz C, Buckenmeyer G (2013) Identification of Arabidopsis VTC3 as a putative and unique dual function protein kinase:protein phosphatase involved in the regulation of the ascorbic acid pool in plants. J Exp Bot 64:2793–2804

    Article  CAS  PubMed  Google Scholar 

  • Cronje C, George GM, Fernie AR, Bekker J, Kossmann J, Bauer R (2012) Manipulation of l-ascorbic acid biosynthesis pathways in Solanum lycopersicum: Elevated GDP-mannose pyrophosphorylase activity enhances l-ascorbate levels in red fruit. Planta 235:553–564

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Rus E, Amaya I, Sánchez-Sevilla JF, Botella MA, Valpuesta V (2011) Regulation of l-ascorbic acid content in strawberry fruits. J Exp Bot 62:4191–4201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davey MW, Keulemans J (2004) Determining the potential to breed for enhanced antioxidant status in Malus: mean inter- and intravarietal fruit vitamin C and glutathione contents at harvest and their evolution during storage. J Agric Food Chem 52:8031–8038

    Article  CAS  PubMed  Google Scholar 

  • DeBolt S, Cook DR, Ford CM (2006) l-tartaric acid synthesis from vitamin C in higher plants. Proc Natl Acad Sci U S A 103:5608–5613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Gara L, De Pinto MC, Arrigoni O (1997) Ascorbate biosynthesis and ascorbate peroxidase activity during the early stage of wheat germination. Physiol Planta 100:894–900

    Article  Google Scholar 

  • Di Matteo A, Sacco A, Anacleria M, Pezzotti M, Delledonne M, Ferrarini A, Frusciante L, Barone A (2010) The ascorbic acid content of tomato fruits is associated with the expression of genes involved in pectin degradation. BMC Plant Biol 10:163–173

    Article  PubMed  PubMed Central  Google Scholar 

  • Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N (2007) Two genes in Arabidopsis thaliana encoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J 52:673–689

    Article  CAS  PubMed  Google Scholar 

  • Endres S, Tenhaken R (2009) Myoinositol oxygenase controls the level of myoinositol in Arabidopsis, but does not increase ascorbic acid. Plant Physiol 149:1042–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Noctor CH (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franceschi VR, Tarlyn NM (2002) l-Ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants. Plant Physiol 130:649–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franck F, Baetens M, Lammertyn J, Verboven P, Davey MW, Nicolaï BM (2003) Ascorbic acid concentration in cv. Conference pears during fruit development and postharvest storage. J Agric Food Chem 51:4757–4763

    Article  CAS  PubMed  Google Scholar 

  • Fukunaga K, Fujikawa Y, Esaka M (2010) Light regulation of ascorbic acid biosynthesis in rice via light responsive cis-elements in genes encoding ascorbic acid biosynthetic enzymes. Bios Bio Biochem 74:888–891

    Google Scholar 

  • Gautier H, Massot C, Stevens R, Sérino S, Génard M (2009) Regulation of tomato fruit ascorbate content is more highly dependent on fruit irradiance than leaf irradiance. Annl Bot 103:495–504

    Article  CAS  Google Scholar 

  • Gatzek S, Wheeler GL, Smirnoff N (2002) Antisense suppression of l-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated l-galactose synthesis. Plant J 30:541–553

    Article  CAS  PubMed  Google Scholar 

  • Gergoff Grozeff GE, Bartoli CG (2014) Participation of ascorbic acid in the dormancy establishment of poplar lateral branch buds. J For Res 19:301–304

    Google Scholar 

  • Gergoff Grozeff GE, Chaves A, Bartoli CG (2010) Ethylene regulates ascorbic acid content during dark-induced leaf senescence. Plant Sci 178:207–212

    Google Scholar 

  • Gergoff Grozeff GE, Senn ME, Alegre M, Chaves AR, Bartoli CG (2016) Nocturnal low irradiance pulses improve fruit yield and lycopene concentration in tomato. Sci Hort 203:47–52

    Google Scholar 

  • Gest N, Gautier H, Stevens R (2013) Ascorbate as seen through plant evolution: the rise of a successful molecule? J Exp Bot 64:33–53

    Article  CAS  PubMed  Google Scholar 

  • Gilbert L, Alhagdow M, Nunes-Nesi A, Quemener B, Guillon F, Bouchet B, Faurobert M, Gouble B, Page D, Garcia V (2009) The GDP-d-mannose epimerase (GME) plays a key role at the intersection of ascorbate and non-cellulosic cell wall biosynthesis in tomato. Plant J 60:499–508

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:S170–S180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock RD, Walker PG, Pont SDA, Marquis N, Vivera S, Gordon SL (2007) l-Ascorbic acid accumulation in fruit of Ribes nigrum occurs by in situ biosynthesis via the l-galactose pathway. Funct Plant Biol 34:1080–1091

    Article  CAS  Google Scholar 

  • Hao J, Yin Y, Fei SZ (2013) Brassinosteroid signaling network: implications on yield and stress tolerance. Plant Cell Rep 32:1017–1030

    Article  CAS  PubMed  Google Scholar 

  • Huang HW, Wang Y, Zhang ZH, Jiang ZW, Wang SM (2004) Actinidia germplasm resources and kiwifruit industry in China. Hort Sci 39:1165–1172

    Google Scholar 

  • Imai T, Ban Y, Terakami S, Yamamoto T, Moriguchi T (2009) l-Ascorbate biosynthesis in peach: cloning of six l-galactose pathway-related genes and their expression during peach fruit development. Physiol Plant 136:139–149

    Article  CAS  PubMed  Google Scholar 

  • Ioannidi E, Kalamaki MS, Engineer C, Pateraki I, Alexandrou D, Mellidou I (2010) Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. J Exp Bot 60:663–678

    Article  Google Scholar 

  • Ishikawa T, Dowdle J, Smirnoff N (2006) Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiol Plant 126:343–355

    Article  CAS  Google Scholar 

  • Kerchev PI, Pellny TK, Vivancos PD, Kiddle G, Hedden P, Driscoll S, Vanacker H, Verrier PJ, Hancock RD, Foyer CH (2011) The transcription factor ABI-4 is required for the ascorbic acid-dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis. Plant Cell 23:3319–3334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller R, Springer F, Renz A, Kossmann J (1999) Antisense inhibition of the GDP-mannose pyrophosphorylase reduces the ascorbate content in transgenic plants leading to developmental changes during senescence. Plant J 19:131–141

    Google Scholar 

  • Kiddle G (2004) The role of ascorbate in plant defence and development. Ph. D. thesis. University of Bristol, UK

    Google Scholar 

  • Kim JG, Takami Y, Mizugami T, Beppu K, Fukuda T, Kataoka I (2006) CPPU application on size and quality of hardy kiwifruit. Sci Hort 110:219–222

    Article  CAS  Google Scholar 

  • Laing WA, Martínez-Sánchez M, Wright MA, Bulley SM, Brewster D, Dare AP, Rassam M, Wang D, Storey R, Macknight RC, Hellens RP (2015) An upstream open reading frame is essential for feedback regulation of ascorbate biosynthesis in Arabidopsis. Plant Cell 27:772–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SK, Kader AA (2000) Pre and postharvest factors influencing vitamin C content in horticultural crops. Post Biol Technol 20:207–220

    Article  CAS  Google Scholar 

  • Li M, Ma F, Liu J, Li J (2010) Shading the whole vines during young fruit development decreases ascorbate accumulation in kiwi. Physiol Planta 140:225–237

    CAS  Google Scholar 

  • Li M, Ma F, Shang P, Zhang M, Hou C, Liang D (2009) Influence of light on ascorbate formation and metabolism in apple fruits. Planta 230:39–51

    Article  CAS  PubMed  Google Scholar 

  • Li M, Ma F, Zhang M, Pu F (2008) Distribution and metabolism of ascorbic acid in apple fruits (Malus domesticaBorkh cv. Gala). Plant Sci 174:606–612

    Article  CAS  Google Scholar 

  • Linster CL, Clarke SG (2008) l-Ascorbate biosynthesis in higher plants: the role of VTC2. Trend Plant Sci 13:567–573

    Article  CAS  Google Scholar 

  • Linster CL, Gomez TA, Christensen KC, Adler LN, Young BD, Brenner C, Steven G, Clarke SG (2007) Arabidopsis VTC2 encodes a GDP-l-Galactose Phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants. J Biol Chem 282:18879–18885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loewus FA (1999) Biosynthesis and metabolism of ascorbic acid and of analogs of ascorbic acid in fungi. Phytochemistry 52:193–210

    Article  CAS  Google Scholar 

  • Lorence A, Chevone BI, Mendes P, Nessler CL (2004) Myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol 134:1200–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mapson W, Breslow E (1958) Biological synthesis of ascorbic acid: l-Galactono-γ-lactone Dehydrogenase. Biochem J 68:395–406

    Google Scholar 

  • Mapson LW, Isherwood FA, Chen YT (1954) Biological synthesis of l-ascorbic acid: the conversion of l-galactono-γ-lactone into l-ascorbic acid by plant mitochondria. Biochem J 56:21–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruta T, Yonemitsu M, Yabuta Y, Tamoi M, Ishikawa T, Shigeoka S (2008) Arabidopsis phosphomannosei somerase 1, but not phosphomannose isomerase 2, is essential for ascorbic acid biosynthesis. J Biol Chem 283:28842–28851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massot C, Stevens R, Génard M, Longuenesse JJ, Gautier H (2012) Light affects ascorbate content and ascorbate-related gene expression in tomato leaves more than in fruits. Planta 235:153–163

    Article  CAS  PubMed  Google Scholar 

  • Mastropasqua L, Borraccino G, Bianco L, Paciolla C (2012) Light qualities and dose influence ascorbate pool size in detached oat leaves. Plant Sci 183:57–64

    Article  CAS  PubMed  Google Scholar 

  • Mateos RM, Bonilla-Valverde D, del Río LA, Palma JM, Corpas FJ (2009) NADP-dehydrogenases from pepper fruits: effect of maturation. Physiol Plant 135:130–139

    Article  CAS  PubMed  Google Scholar 

  • Mateos RM, Jiménez A, Román P, Romojaro F, Bacarizo S, Leterrier M, Gómez M, Sevilla F, del Río LA, Corpas FJ, Palma JM (2013) Antioxidant systems from Pepper (Capsicum annuum L.): involvement in the response to temperature changes in ripe fruits. Int J Mol Sci 14:9556–9580

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazorra LM, Senn ME, Gergoff Grozeff GA, Fanello DD, Carrión CA, Núñez M, Bishop GJ, Bartoli CG (2014) Impact of brassinosteroids and ethylene on ascorbic acid accumulation in tomato leaves. Plant Physiol Biochem 74:315–322

    Article  Google Scholar 

  • Melino VJ, Hayes MA, Soole KL, Ford CM (2011) The role of light in the regulation of ascorbate metabolism during berry development in the cultivated grapevine Vitis vinifera L. J Sci Food Agric 91:1712–1721

    Article  CAS  PubMed  Google Scholar 

  • Mellidou I, Keulemans J, Kanellis AK, Davey MW (2012) Regulation of fruit ascorbic acid concentrations during ripening in high and low vitamin C tomato cultivars. BMC Plant Biol 12:239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millar AH, Mittova V, Kiddle G, Heazlewood JL, Bartoli CG, Theodoulou FL, Foyer CH (2003) Control of ascorbate synthesis by respiration and its implications for stress responses. Plant Physiol 133:443–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller-Moule P (2008) An expression analysis of the ascorbate biosynthesis enzyme VTC2. Plant Mol Biol 68:31–41

    Article  PubMed  Google Scholar 

  • Nishiyama I, Yamashita Y, Yamanaka M, Shimohashi A, Fukuda T, Oota T (2004) Varietal difference in vitamin C content in the fruit of kiwifruit and other Actinidia species. J Agric Food Chem 52:5472–5475

    Article  CAS  PubMed  Google Scholar 

  • Nunes-Nesi A, Carrari A, Lytovchenko A, Smith AMO, Loureiro ME, Ratcliffe RG, Sweetlove LJ, Fernie A (2005) Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants. Plant Physiol 137:611–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osorio S, Nunes-Nesi A, Stratman M, Fernie AR (2013) Pyrophosphate levels strongly influence ascorbate and starch content in tomato fruit. Front Plant Sci 4:308

    Google Scholar 

  • Pallanca JE, Smirnoff N (2000) The control of ascorbic acid synthesis and turnover in pea seedlings. J Exp Bot 345:669–674

    Article  Google Scholar 

  • Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes controlling development through hormone signaling. Plant Cell 15:939–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pineau B, Layoune O, Danon A, De Paepe R (2008) l-Galactono-1,4-lactone dehydrogenase is required for the accumulation of plant respiratory complex I. J Biol Chem 283:32500–32505

    Article  CAS  PubMed  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A (2014) The effect of natural and synthetic auxins on the growth, metabolite content and antioxidant response of green alga Chlorella vulgaris (Trebouxiophyceae). Plant Growth Reg 73:57–66

    Article  CAS  Google Scholar 

  • Prudent M, Causse M, Génard M, Tripodi P, Grandillo S, Bertin N (2009) Genetic and physiological analysis of tomato fruit weight and composition: Influence of carbon availability on QTL detection. J Exp Bot 60:923–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin A, Shi Q, Yu X (2011) Ascorbic acid contents in transgenic potato plant overexpressing two dehydroascorbate reductase genes. Mol Biol Rep 38:1557–1566

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues RB, De Menezes HC, Cabral LMC, Dornier M, Reynes M (2001) An amazonian fruit with a high potential as a source of vitamin C: camu-camu (Myrciaria dubia). Fruits 56:345–354

    Article  Google Scholar 

  • Rohde A, Bhalerao R (2007) Plant dormancy in the perennial context. Trend Plant Sci 12:217–223

    Article  CAS  Google Scholar 

  • Sasaki-Sekimoto Y, Taki N, Obayashi T, Aono M, Matsumoto F, Sakurai N, Suzuki H, Hirai MY, Noji M, Saito K, Masuda T, Takamiya K, Shibata D, Ohta H (2005) Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J 44:653–668

    Article  CAS  PubMed  Google Scholar 

  • Schertl P, Sunderhaus S, Klodmann J, Gergoff Grozeff GE, Bartoli CG, Braun HP (2012) l-galactono-1,4-lactone dehydrogenase (GLDH) forms part of three subcomplexes of mitochondrial complex I in Arabidopsis thaliana. J Biol Chem 287:14412–14419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schimmeyer J, Bock R, Meyer EH (2016) l-Galactono-1,4-lactone dehydrogenase is an assembly factor of the membrane arm of mitochondrial complex I in Arabidopsis. Plant Mol Biol 90:117–126

    Article  CAS  PubMed  Google Scholar 

  • Siendones E, Gonzalez-Reyes JA, Santos-Ocaña C, Navas P, Córdoba F (1999) Biosynthesis of ascorbic acid in kidney bean. l-galactono-γ-lactone dehydrogenase is an intrinsic protein located at the mitochondrial inner membrane. Plant Physiol 120:907–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens R, Buret M, Duffe P, Garchery C, Baldet P, Rothan C, Causse (2007) Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiol 143:1943–1953

    Google Scholar 

  • Szarka A, Horemans N, Kovács Z, Gróf P, Mayer M, Bánhegyi G (2007) Dehydroascorbate reduction in plant mitochondria is coupled to the respiratory electron transfer chain. Physiol Plant 129:225–232

    Article  CAS  Google Scholar 

  • Tamaoki M, Mukai F, Asai N, Nakajima N, Kubo A, Aono M, Saji H (2003) Light-controlled expression of a gene encoding l-galactono-g-lactone dehydrogenase which affects ascorbate pool size in Arabidopsis thaliana. Plant Sci 164:1111–1117

    Article  CAS  Google Scholar 

  • Tedone L, Hancock RD, Alberino S, Haupt S, Viola R (2004) Long-distance transport of l-ascorbic acid in potato. BMC Plant Biol 4:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Tokunaga T, Miyahara K, Tabata K, Esaka M (2005) Generation and properties of ascorbic acid-overproducing transgenic tobacco cells expressing sense RNA for L-galactono-1,4-lactone dehydrogenase. Planta 220:854–863

    Google Scholar 

  • Valpuesta V, Botella MA (2004) Biosynthesis of l-ascorbic acid in plants: new pathways for an old antioxidant. Trends Plant Sci 9:573–577

    Article  CAS  PubMed  Google Scholar 

  • Vanderslice JT, Higgs DJ, Hayes JM, Block G (1990) Ascorbic acid and dehydroascorbic acid content of food-as-eaten. J Food Comp Anal 3:105–118

    Article  CAS  Google Scholar 

  • Voxeur A, Gilbert L, Rihouey C, Driouich A, Rothan C, Baldet P, Lerouge P (2011) Silencing of the GDP-d-mannose-3,5-epimerase affects the structure and cross-linking of the pectic polysaccharide rhamnogalacturonan II and plant growth in tomato. J Biol Chem 286:8014–8020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SY, Line HS (2000) Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J Agric Food Chem 48:140–146

    Article  CAS  PubMed  Google Scholar 

  • Wheeler G, Ishikawa T, Pornsaksit V, Smirnoff N (2015) Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes. Elife 4:e06369

    PubMed Central  Google Scholar 

  • Wolucka BA, Goossens A, Inzé D (2005) Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions. J Exp Bot 56:2527–2538

    Article  CAS  PubMed  Google Scholar 

  • Wolucka BA, Van Montagu M (2003) GDP-mannose 3′,5′-epimerase forms GDP-l-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem 28:47483–47490

    Article  Google Scholar 

  • Xu HI, Xu Q, Li F, Feng Y, Qin F, Fang W (2012) Applications of xerophytophysiology in plant production-LED blue light as a stimulus improved tomato crop. Sci Hortic 148:190–196

    Article  Google Scholar 

  • Yabuta Y, Mieda T, Rapolu M, Nakamura A, Motoki T, Maruta T, Yoshimura K, Ishikawa T, Shigeoka S (2007) Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. J Exp Bot 58:2661–2671

    Article  CAS  PubMed  Google Scholar 

  • Yabuta Y, Maruta T, Nakamura A, Mieda T, Yoshimura K, Ishikawa T, Shigeoka S (2008) Conversion of l-Galactono-1,4-lactone to l-ascorbate is regulated by the photosynthetic electron transport chain in Arabidopsis. Biosci Biotechnol Biochem 72:2598–2607

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Ouyang B, Yang C, Zhang X, Liu H, Zhang Y, Zhang J, Li H, Ye Z (2013) Reducing AsA leads to leaf lesion and defence response in knock-down of the AsA Biosynthetic enzyme GDP-d-Mannose Pyrophosphorylase gene in tomato plant. PLoS ONE 8:e61987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Lorence A, Gruszewski HA, Chevone BI, Nessler CL (2009) AMR1, an Arabidopsis gene that coordinately and negatively regulates the mannose/l-galactose ascorbic acid biosynthetic pathway. Plant Physiol 150:942–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

CGB, MES, and GAGG are scientific researchers at CONICET (Argentina). The authors are grateful to CONICET and ANPCyT (Argentina) for the grants supporting our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Bartoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bartoli, C.G., Senn, M.E., Gergoff Grozeff, G.E. (2016). Physiological Processes Contributing to the Synthesis of Ascorbic Acid in Plants. In: Gupta, D., Palma, J., Corpas, F. (eds) Redox State as a Central Regulator of Plant-Cell Stress Responses. Springer, Cham. https://doi.org/10.1007/978-3-319-44081-1_4

Download citation

Publish with us

Policies and ethics