Skip to main content

StreAM- \(T_g\): Algorithms for Analyzing Coarse Grained RNA Dynamics Based on Markov Models of Connectivity-Graphs

  • Conference paper
  • First Online:
Book cover Algorithms in Bioinformatics (WABI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9838))

Included in the following conference series:

Abstract

In this work, we present a new coarse grained representation of RNA dynamics. It is based on cliques and their patterns within adjacency matrices obtained from molecular dynamics simulations. RNA molecules are well-suited for this representation due to their composition which is mainly modular and assessable by the secondary structure alone. Each adjacency matrix represents the interactions of k nucleotides. We then define transitions between states as changes in the adjacency matrices which form a Markovian dynamics. The intense computational demand for deriving the transition probability matrices prompted us to develop StreAM-\(T_g\), a stream-based algorithm for generating such Markov models of k-vertex adjacency matrices representing the RNA. Here, we benchmark StreAM-\(T_g\) (a) for random and RNA unit sphere dynamic graphs. (b) we apply our method on a long term molecular dynamics simulation of a synthetic riboswitch (1,000 ns). In the light of experimental data our results show important design opportunities for the riboswitch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Guaranteed to exist due to the Perron-Frobenius theorem with an eigenvalue of \(\lambda = 1\).

  2. 2.

    https://github.com/BenjaminSchiller/Stream.

  3. 3.

    http://www.cbs.tu-darmstadt.de/streAM-Tg.tar.gz.

  4. 4.

    https://github.com/BenjaminSchiller/DNA.datasets.

References

  1. Alder, B.J., Wainwright, T.E.: Studies in molecular dynamics. J. Chem. Phys. 31, 459–466 (1959)

    Article  MathSciNet  Google Scholar 

  2. Aleksandrov, A., Simonson, T.: Molecular mechanics models for tetracycline analogs. J. Comp. Chem. 30(2), 243–255 (2009)

    Article  Google Scholar 

  3. Andronescu, M., Condon, A., Hoos, H.H., Mathews, D.H., Murphy, K.P.: Computational approaches for RNA energy parameter estimation. RNA 16(12), 2304–2318 (2010)

    Article  Google Scholar 

  4. Berens, C., Thain, A., Schroeder, R.: A tetracycline-binding RNA aptamer. Bioorg. Med. Chem. 9(10), 2549–2556 (2001)

    Article  Google Scholar 

  5. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M.: Charmm: a program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem. 4(2), 187–217 (1983)

    Article  Google Scholar 

  6. Buß, O., Jager, S., Dold, S.-M., Zimmermann, S., Hamacher, K., Schmitz, K., Rudat, J.: Statistical evaluation of HTS assays for enzymatic hydrolysis of \(\beta \)-keto esters. PloS One 11(1), e0146104 (2016). doi:10.1371/journal.pone.0146104

    Article  Google Scholar 

  7. Cameron, D.E., Bashor, C.J., Collins, J.J.: A brief history of synthetic biology. Nat. Rev. Microbiol. 12(5), 381–390 (2014)

    Article  Google Scholar 

  8. Carothers, J.M., Goler, J., Juminaga, D., Keasling, J.D.: Model-driven engineering of RNA devices to quantitatively program gene expression. Science 334(6063), 1716–1719 (2011)

    Article  Google Scholar 

  9. Chodera, J.D., Noé, F.: Markov state models of biomolecular conformational dynamics. Curr. Opin. Struct. Biol. 25, 135–144 (2014)

    Article  Google Scholar 

  10. Deigan, K.E., Li, T.W., Mathews, D.H., Weeks, K.M.: Accurate SHAPE-directed RNA structure determination. PNAS 106(1), 97–102 (2009)

    Article  Google Scholar 

  11. Gan, H.H., Pasquali, S., Schlick, T.: Exploring the repertoire of RNA secondary motifs using graph theory; implications for RNA design. Nuc. Acids Res. 31(11), 2926–2943 (2003)

    Article  Google Scholar 

  12. Hamacher, K., Trylska, J., McCammon, J.A.: Dependency map of proteins in the small ribosomal subunit. PLoS Comput. Biol. 2(2), 1–8 (2006)

    Article  Google Scholar 

  13. Cheatham III, T.E.: Simulation and modeling of nucleic acid structure, dynamics and interactions. Curr. Opin. Struct. Biol. 14(3), 360–367 (2004)

    Article  Google Scholar 

  14. Jonikas, M.A., Radmer, R.J., Laederach, A., Das, R., Pearlman, S., Herschlag, D., Altman, R.B.: Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters. RNA 15(2), 189–99 (2009)

    Article  Google Scholar 

  15. Laing, C., Schlick, T.: Computational approaches to RNA structure prediction, analysis, and design. Curr. Opin. Struct. Biol. 21(3), 306–318 (2011)

    Article  Google Scholar 

  16. Lenz, O., Keul, F., Bremm, S., Hamacher, K., von Landesberger, T.: Visual analysis of patterns in multiple amino acid mutation graphs. In: 2014 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 93–102 (2014)

    Google Scholar 

  17. Manzourolajdad, A., Arnold, J.: Secondary structural entropy in RNA switch (Riboswitch) identification. BMC Bioinform. 16(1), 133 (2015)

    Article  Google Scholar 

  18. Parisien, M., Major, F.: The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature 452(7183), 51–55 (2008)

    Article  Google Scholar 

  19. Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M.R., Smith, J.C., Kasson, P.M., van der Spoel, D., Hess, B., Lindahl, E.: Gromacs 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7), 845–854 (2013)

    Article  Google Scholar 

  20. Reuss, A., Vogel, M., Weigand, J., Suess, B., Wachtveitl, J.: Tetracycline determines the conformation of its aptamer at physiological magnesium concentrations. Biophys. J. 107(12), 2962–2971 (2014)

    Article  Google Scholar 

  21. Schiller, B., Jager, S., Hamacher, K., Strufe, T.: StreaM - a stream-based algorithm for counting motifs in dynamic graphs. In: Dediu, A.-H., Hernández-Quiroz, F., Martín-Vide, C., Rosenblueth, D.A. (eds.) AlCoB 2015. LNCS, vol. 9199, pp. 53–67. Springer, Heidelberg (2015). doi:10.1007/978-3-319-21233-3_5

    Chapter  Google Scholar 

  22. Schlick, T.: Mathematical and biological scientists assess the state of the art in RNA science at an IMA Workshop, RNA in biology, bioengineering, and biotechnology. Int. J. Multiscale Comput. Eng. 8(4), 369–378 (2010)

    Article  Google Scholar 

  23. Schrödinger, L.L.C.: The PyMOL molecular graphics system, version 1.8, November 2015

    Google Scholar 

  24. Senne, M., Trendelkamp-schroer, B., Noe, F.: EMMA: A software package for Markov model building and analysis. J. Chem. Theory Comput. 8(7), 2223–2238 (2012)

    Article  Google Scholar 

  25. Hanson, S., Gesine Bauer, B.F., Suess, B.: Molecular analysis of a synthetic tetracycline-binding riboswitch. RNA 11, 2549–2556 (2005)

    Article  Google Scholar 

  26. Shapiro, B.A., Yingling, Y.G., Kasprzak, W., Bindewald, E.: Bridging the gap in RNA structure prediction. Curr. Opin. Struct. Biol. 17(2), 157–165 (2007)

    Article  Google Scholar 

  27. Spedicato, G.A.: Markovchain: discrete time Markov chains made easy (2015), R package version 0.4.3

    Google Scholar 

  28. Stombaugh, J., Zirbel, C.L., Westhof, E., Leontis, N.B.: Frequency and isostericity of RNA base pairs. Nucleic Acids Res. 37(7), 2294–2312 (2009)

    Article  Google Scholar 

  29. Team, R.D.C.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2008)

    Google Scholar 

  30. Tung, C.S.: RNA Structural Motifs. Life Sciences, pp. 1–4 (2002)

    Google Scholar 

  31. Wunnicke, D., Strohbach, D., Weigand, J.E., Appel, B., Feresin, E., Suess, B., Muller, S., Steinhoff, H.J.: Ligand-induced conformational capture of a synthetic tetracycline riboswitch revealed by pulse EPR. RNA 17(1), 182–188 (2011)

    Article  Google Scholar 

  32. Xiao, H., Edwards, T.E., Ferré-D’Amaré, A.R.: Structural basis for specific, high-affinity tetracycline binding by an in vitro evolved aptamer and artificial riboswitch. Chem. Biol. 15(10), 1125–1137 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The Authors gratefully acknowledge financial support by the LOEWE project CompuGene of the Hessen State Ministry of Higher Education, Research and the Arts. Parts of this work have also been supported by the DFG, through the Cluster of Excellence cfaed as well as the CRC HAEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Jager .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Jager, S., Schiller, B., Strufe, T., Hamacher, K. (2016). StreAM- \(T_g\): Algorithms for Analyzing Coarse Grained RNA Dynamics Based on Markov Models of Connectivity-Graphs. In: Frith, M., Storm Pedersen, C. (eds) Algorithms in Bioinformatics. WABI 2016. Lecture Notes in Computer Science(), vol 9838. Springer, Cham. https://doi.org/10.1007/978-3-319-43681-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43681-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43680-7

  • Online ISBN: 978-3-319-43681-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics