Skip to main content

New Research in Ionizing Radiation and Nanoparticles: The ARGENT Project

  • Chapter
  • First Online:

Abstract

This chapter gives an overview of “ARGENT ” (“Advanced Radiotherapy , Generated by Exploiting Nanoprocesses and Technologies”) , an ongoing international Initial Training Network project , supported by the European Commission . The project , bringing together world-leading researchers in physics, medical physics, chemistry, and biology, aims to train 13 Early Stage Researchers (ESRs) whose research activities are linked to understanding and exploiting the nanoscale processes that drive physical, chemical, and biological effects induced by ionizing radiation in the presence of radiosensitizing nanoparticles . This research is at the forefront of current practices and involves many experts from the respective scientific disciplines. In this chapter, we overview research topics covered by ARGENT and briefly describe the research projects of each ESR.

S. Lacombe—On behalf of the ARGENT consortium, see http://www.itn-argent.eu.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. COST Action Nano-IBCT. http://mbnresearch.com/project-nanoibct

  2. Peer D et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    Article  ADS  Google Scholar 

  3. Porcel E et al (2010) Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology 21:085103

    Article  ADS  Google Scholar 

  4. McMahon SJ et al (2011) Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci Rep 1:18

    Article  ADS  Google Scholar 

  5. Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM (2008) Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol 60:977–985

    Article  Google Scholar 

  6. Kwatra D, Venugopal A, Anant S (2013) Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res 2:330–342

    Google Scholar 

  7. Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30:592–599

    Article  Google Scholar 

  8. Carter JD, Cheng NN, Qu Y, Suarez GD, Guo T (2007) Nanoscale energy deposition by X-ray absorbing nanostructures. J Phys Chem B 111:11622–11625

    Article  Google Scholar 

  9. Liu C-J et al (2010) Enhancement of cell radiation sensitivity by pegylated gold nanoparticles. Phys Med Biol 55:931–945

    Article  Google Scholar 

  10. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–N315

    Article  Google Scholar 

  11. Kobayashi K, Usami N, Porcel E, Lacombe S, Le Sech C (2010) Enhancement of radiation effect by heavy elements. Mutat Res 704:123–131

    Article  Google Scholar 

  12. Usami N et al (2008) Mammalian cells loaded with platinum-containing molecules are sensitized to fast atomic ions. Int J Radiat Biol 84:603–611

    Article  Google Scholar 

  13. Porcel E, Kobayashi K, Usami N, Remita H, Le Sech C, Lacombe S (2011) Photosensitization of plasmid-DNA loaded with platinum nano-particles and irradiated by low energy X-rays. J Phys Conf Ser 261:012004

    Article  ADS  Google Scholar 

  14. Asharani PV, Wu, YL, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:255102

    Google Scholar 

  15. Porcel E et al (2014) Gadolinium-based nanoparticles to improve the hadrontherapy performances. Nanomed Nanotechnol 10:1601–1608

    Article  Google Scholar 

  16. Alric C et al (2008) Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J Am Chem Soc 130:5908–5915

    Article  Google Scholar 

  17. Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L (2011) Nanomaterials: applications in cancer imaging and therapy. Adv Mater 23:H18–H40

    Article  Google Scholar 

  18. Alric C et al (2013) The biodistribution of gold nanoparticles designed for renal clearance. Nanoscale 5:5930–5939

    Article  ADS  Google Scholar 

  19. Sancey L et al (2014) The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. Br J Radiol 87:20140134

    Article  Google Scholar 

  20. Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    Article  Google Scholar 

  21. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    Article  ADS  Google Scholar 

  22. Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S (2009) Size-dependent endocytosis of nanoparticles. Adv Mater 21:419–424

    Article  Google Scholar 

  23. Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WCW (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9:1909–1915

    Article  ADS  Google Scholar 

  24. Zhu M, Nie G, Meng H, Xia T (2012) Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res 46:622–631

    Article  Google Scholar 

  25. Lin Y, McMahon SJ, Paganetti H, Schuemann J (2015) Biological modeling of gold nanoparticle enhanced radiotherapy for proton therapy. Phys Med Biol 60:4149–4168

    Article  Google Scholar 

  26. Beddoes CM, Case CP, Briscoe WH (2015) Understanding nanoparticle cellular entry: a physicochemical perspective. Adv Col Interface Sci 218:48–68

    Article  Google Scholar 

  27. Hirsch V, Salaklang J, Rothen-Rutishauser B, Petri-Fink A (2013) Influence of serum supplemented cell culture medium on colloidal stability of polymer coated iron oxide and polystyrene nanoparticles with impact on cell interactions in vitro. IEEE Trans Magn 49:402–407

    Article  ADS  Google Scholar 

  28. Yah CS (2013) The toxicity of gold nanoparticles in relation to their physiochemical properties. Biomed Res 24:400–413

    Google Scholar 

  29. Kalay S, Blanchet C, Culha M (2014) Linear assembly and 3D networks of peptide modified gold nanoparticles. Turk J Chem 38:686–700

    Article  Google Scholar 

  30. da Rocha EL, Caramori GF, Rambo CR (2013) Nanoparticle translocation through a lipid bilayer tuned by surface chemistry. Phys Chem Chem Phys 15:2282–2290

    Article  Google Scholar 

  31. Akhter S, Ahmad MZ, Ahmad FJ, Storm G, Kok RJ (2012) Gold nanoparticles in theranostic oncology: current state-of-the-art. Expert Opin Drug Deliv 9:1225–1243

    Article  Google Scholar 

  32. Ranganathan R et al (2012) Nanomedicine: towards development of patient-friendly drug-delivery systems for oncological applications. Int J Nanomed 7:1043–1060

    Google Scholar 

  33. Illes E et al (2014) PEGylation of surfacted magnetite core-shell nanoparticles for biomedical application. Colloid Surf A 460:429–440

    Article  Google Scholar 

  34. Thierry B, Griesser HJ (2012) Dense PEG layers for efficient immunotargeting of nanoparticles to cancer cells. J Mater Chem 22:8810–8819

    Article  Google Scholar 

  35. Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55:403–419

    Article  Google Scholar 

  36. Chithrani BD, Stewart J, Allen C, Jaffray DA (2009) Intracellular uptake, transport, and processing of nanostructures in cancer cells. Nanomed Nanotechnol 5:118–127

    Article  Google Scholar 

  37. Saptarshi SR, Duschl A, Lopata AL (2013) Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol 11:26

    Article  Google Scholar 

  38. Shmeeda H, Tzemach D, Mak L, Gabizon A (2009) Her2-targeted pegylated liposomal doxorubicin: retention of target-specific binding and cytotoxicity after in vivo passage. J Controlled Release 136:155–160

    Article  Google Scholar 

  39. Calvaresi EC, Hergenrother PJ (2013) Glucose conjugation for the specific targeting and treatment of cancer. Chem Sci 4:2319–2333

    Article  Google Scholar 

  40. Gromnicova R et al (2013) Glucose-coated gold nanoparticles transfer across human brain endothelium and enter astrocytes in vitro. PLoS ONE 8:e81043

    Article  ADS  Google Scholar 

  41. Hu C, Niestroj M, Yuan D, Chang S, Chen J (2015) Treating cancer stem cells and cancer metastasis using glucose-coated gold nanoparticles. Int J Nanomed 10:2065–2077

    Google Scholar 

  42. Dai Q, Walkey C, Chan WC (2014) Polyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targeting. Angew Chem Int Ed 53:5093–5096

    Article  Google Scholar 

  43. Miladi I et al (2014) The in vivo radiosensitizing effect of gold nanoparticles based MRI contrast agents. Small 10:1116–1124

    Article  Google Scholar 

  44. Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257:638–665

    Article  Google Scholar 

  45. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  46. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241:20–22

    ADS  Google Scholar 

  47. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun 1994:801–802

    Article  Google Scholar 

  48. Debouttiere P-J et al (2006) Design of gold nanoparticles for magnetic resonance imaging. Adv Funct Mater 16:2330–2339

    Article  Google Scholar 

  49. Perrault SD, Chan WCW (2009) Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50–200 nm. J Am Chem Soc 131:17042–17043

    Article  Google Scholar 

  50. Ahmadi T, Wang Z, Green T, Henglein A, El-Sayed M (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272:1924–1926

    Article  ADS  Google Scholar 

  51. Stepanov AL, Golubev AN, Nikitin SI, Osin YN (2014) A review on the fabrication and properties of platinum nanoparticles. Rev Adv Mater Sci 38:160–175

    Google Scholar 

  52. Miladi I et al (2013) Biodistribution of ultra small gadolinium-based nanoparticles as theranostic agent: application to brain tumors. J Biomater Appl 28:385–394

    Article  Google Scholar 

  53. Faucher L, Tremblay M, Lagueux J, Gossuin Y, Fortin M-A (2012) Rapid synthesis of PEGylated ultrasmall gadolinium oxide nanoparticles for cell labeling and tracking with MRI. ACS Appl Mater Interfaces 4:4506–4515

    Article  Google Scholar 

  54. Louis C et al (2005) Nanosized hybrid particles with double luminescence for biological labeling. Chem Mater 17:1673–1682

    Article  Google Scholar 

  55. Torchilin VP, Papisov MI (1994) Why do polyethylene glycol-coated liposomes circulate so long? J Liposome Res 4:725–739

    Article  Google Scholar 

  56. Nicol JR, Dixon D, Coulter JA (2015) Gold nanoparticle surface functionalization: a necessary requirement in the development of novel nanotherapeutics. Nanomedicine 10:1315–1326

    Article  Google Scholar 

  57. Chattopadhyay N, Cai Z, Kwon YL, Lechtman E, Pignol J-P, Reilly RM (2013) Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation. Breast Cancer Res Treat 137:81–91

    Article  Google Scholar 

  58. Le Duc G et al (2011) Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano 5:9566–9574

    Article  Google Scholar 

  59. Fang J et al (2014) Manipulating the surface coating of ultra-small Gd\(_2\)O\(_3\) nanoparticles for improved T1-weighted MR imaging. Biomaterials 35:1636–1642

    Article  Google Scholar 

  60. Bregoli L, Movia D, Gavigan-Imedio JD, Lysaght J, Reynolds J, Prina-Mello A (2016) Nanomedicine applied to translational oncology: a future perspective on cancer treatment. Nanomed Nanotechnol 12:81–103

    Article  Google Scholar 

  61. Mignot A et al (2013) A top-down synthesis route to ultrasmall multifunctional Gd-based silica nanoparticles for theranostic applications. Chem Eur J 19:6122–6136

    Article  Google Scholar 

  62. Tallury P, Payton K, Santra S (2008) Silica-based multimodal/multifunctional nanoparticles for bioimaging and biosensing applications. Nanomedicine 3:579–592

    Article  Google Scholar 

  63. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  64. Ma K, Mendoza C, Hanson M, Werner-Zwanziger U, Zwanziger J, Wiesner U (2015) Control of ultrasmall sub-10 nm ligand-functionalized fluorescent core-shell silica nanoparticle growth in water. Chem Mater 27:4119–4133

    Article  Google Scholar 

  65. Chi F, Guan B, Yang B, Liu Y, Huo Q (2010) Terminating effects of organosilane in the formation of silica cross-linked micellar core-shell nanoparticles. Langmuir 26:11421–11426

    Article  Google Scholar 

  66. Arriagada FJ, Osseo-Asare K (1999) Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration. J Colloid Interface Sci 211:210–220

    Article  Google Scholar 

  67. Patterson JP, Robin MP, Chassenieux C, Colombani O, O’Reilly RK (2014) The analysis of solution self-assembled polymeric nanomaterials. Chem Soc Rev 43:2412–2425

    Article  Google Scholar 

  68. Zetasizer nano series user manual (2004)

    Google Scholar 

  69. Lehman SE, Tataurova Y, Mueller PS, Mariappan SVS, Larsen SC (2014) Ligand characterization of covalently functionalized mesoporous silica nanoparticles: an NMR toolbox approach. J Phys Chem C 118:29943–29951

    Article  Google Scholar 

  70. Price WS (2005) Applications of pulsed gradient spin-echo NMR diffusion measurements to solution dynamics and organization. Diffus Fundam 2:112

    Google Scholar 

  71. Tomaszewska E et al (2013) Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. J Nanomater 2013:313081

    Article  Google Scholar 

  72. Pettitt ME, Lead JR (2013) Minimum physicochemical characterisation requirements for nanomaterial regulation. Environ Int 52:41–50

    Article  Google Scholar 

  73. Morlieras J et al (2013) Development of gadolinium based nanoparticles having an affinity towards melanin. Nanoscale 5:1603–1615

    Article  ADS  Google Scholar 

  74. Morlieras J et al (2013) Functionalization of small rigid platforms with cyclic RGD peptides for targeting tumors overexpressing \(\alpha _{{\rm {v}}}\beta _3\)-integrins. Bioconjug Chem 24:1584–1597

    Google Scholar 

  75. Truillet C, Lux F, Tillement O, Dugourd P, Antoine R (2013) Coupling of HPLC with electrospray ionization mass spectrometry for studying the aging of ultrasmall multifunctional gadolinium-based silica nanoparticles. Anal Chem 85:10440–10447

    Article  Google Scholar 

  76. Kotb S et al (2016) Gadolinium-based nanoparticles and radiation therapy for multiple brain melanoma metastases: proof of concept before phase I trial. Theranostics 6:418–427

    Article  Google Scholar 

  77. Merbach A, Helm L, Toth E (2013) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley

    Google Scholar 

  78. Davis ME, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782

    Article  Google Scholar 

  79. Brigger I et al (2012) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 64:24–36

    Article  Google Scholar 

  80. Toulany M et al (2014) Cisplatin-mediated radiosensitization of non-small cell lung cancer cells is stimulated by ATM inhibition. Radiother Oncol 111:228–236

    Article  Google Scholar 

  81. Liang K et al (2003) Sensitization of breast cancer cells to radiation by trastuzumab. Mol Cancer Ther 2:1113–1120

    Google Scholar 

  82. Hermanson GT (2013) Bioconjugate techniques. Academic Press

    Google Scholar 

  83. Conde J et al (2014) Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem 2:48

    Article  Google Scholar 

  84. Ghosh SS et al (1990) Use of maleimide-thiol coupling chemistry for efficient syntheses of oligonucleotide-enzyme conjugate hybridization probes. Bioconjug Chem 1:71–76

    Article  Google Scholar 

  85. Lutz J-F, Zarafshani Z (2008) Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azidealkyne “click” chemistry. Adv Drug Deliv Rev 60:958–970

    Google Scholar 

  86. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Oxford University Press

    Google Scholar 

  87. Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications. Academic Press, San Diego

    MATH  Google Scholar 

  88. MacKerell AD Jr et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  Google Scholar 

  89. Xiao F et al (2011) On the role of low-energy electrons in the radiosensitization of DNA by gold nanoparticles. Nanotechnology 22:465101

    Article  ADS  Google Scholar 

  90. Verkhovtsev AV, Korol AV, Solov’yov AV (2015) Revealing the mechanism of the low-energy electron yield enhancement from sensitizing nanoparticles. Phys Rev Lett 114:063401

    Article  ADS  Google Scholar 

  91. Hohenester U, Trügler A (2012) MNPBEM—A Matlab toolbox for the simulation of plasmonic nanoparticles. Comput Phys Commun 183:370–381

    Article  ADS  Google Scholar 

  92. Palik ED (1998) Handbook of optical constants of solids. Academic Press

    Google Scholar 

  93. Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12:2313–2333

    Article  Google Scholar 

  94. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. R Soc Chem 38:1759–1782

    Article  Google Scholar 

  95. Bianchi A et al (2014) Quantitative biodistribution and pharmacokinetics of multimodal gadolinium-based nanoparticles for lungs using ultrashort TE MRI. Magn Reson Mater Phys Biol Med 27:303–316

    Article  Google Scholar 

  96. Pan Y et al (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5:2067–2076

    Article  Google Scholar 

  97. Pan Y et al (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949

    Article  Google Scholar 

  98. Nidome T et al (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114:343–347

    Article  Google Scholar 

  99. Patra HK, Banerjee S, Chaudhuri U, Lahiri P, Dasgupta AK (2007) Cell selective response to gold nanoparticles. Nanomed Nanotechnol 3:111–119

    Article  Google Scholar 

  100. Holmes P, Tuckett C (2000) Airborne particles: exposure in the home and health effects. MRC Institute for Environment and Health, Leicester

    Google Scholar 

  101. Wallace BA, Janes RW (2001) Synchrotron radiation circular dichroism spectroscopy of proteins: secondary structure, fold recognition and structural genomics. Curr Opin Chem Biol 5:567–571

    Article  Google Scholar 

  102. Wallace BA (2000) Synchrotron radiation circular-dichroism spectroscopy as a tool for investigating protein structures. J Synchrotron Radiat 7:289–295

    Article  Google Scholar 

  103. World Health Organization. http://www.who.int/mediacentre/factsheets/fs297/en/, http://www.who.int/mediacentre/factsheets/fs334/en/

  104. Cancer Research UK. http://www.cancerresearchuk.org/about-cancer/type/

  105. American Cancer Society. http://www.cancer.org/cancer/index

  106. Wingfield C (2002) Skin cancer: an overview of assessment and management. Primary Health Care 22:28–37

    Article  Google Scholar 

  107. Coulter JA et al (2012) Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles. Int J Nanomed 7:2673–2685

    Article  Google Scholar 

  108. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell JE (2000) Molecular cell biology. W.H. Freeman, New York

    Google Scholar 

  109. Shukla R et al (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–10654

    Article  Google Scholar 

  110. Brust M et al (1995) Synthesis and reactions of functionalized gold nanoparticles. J Chem Soc Chem Commun 1995:1655–1656

    Article  Google Scholar 

  111. Chithrani BD et al (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7:1542–1550

    Article  ADS  Google Scholar 

  112. Ivanov AI (2014) Pharmacological inhibitors of exocytosis and endocytosis: novel bullets for old targets. Methods Mol Biol 1174:3–18

    Article  Google Scholar 

  113. Gao H et al (2013) Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci Rep 3:2534

    Article  ADS  Google Scholar 

  114. Rogers DWO (1991) The role of Monte Carlo simulation of electron transport in radiation dosimetry. Appl Radiat Isot 42:965–974

    Article  Google Scholar 

  115. Paganetti H et al (2004) Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility. Med Phys 31:2107–2118

    Article  Google Scholar 

  116. Friedland W et al (1998) Monte Carlo simulation of the production of short DNA fragments by low-linear energy transfer radiation using higher-order DNA models. Radiat Res 150:170–182

    Article  Google Scholar 

  117. Nikjoo H et al (2002) Modelling of DNA damage induced by energetic electrons (100 eV to 100 keV). Radiat Prot Dosim 99:77–80

    Article  Google Scholar 

  118. Pimblott SM, Mozumder A (1991) Structure of electron tracks in water. 2. Distribution of primary ionizations and excitations in water radiolysis. J Phys Chem 95:7291–7300

    Article  Google Scholar 

  119. Champion C et al (2012) EPOTRAN: a full-differential Monte Carlo code for electron and positron transport in liquid and gaseous water. Int J Radiat Biol 88:54–61

    Article  Google Scholar 

  120. Incerti S et al (2010) Comparison of GEANT4 very low energy cross section models with experimental data in water. Med Phys 37:4692–4708

    Article  Google Scholar 

  121. Muñoz A, Pérez JM, García G, Blanco F (2005) An approach to Monte Carlo simulation of low-energy electron and photon interactions in air. Nucl Instr Meth A 536:176–188

    Article  ADS  Google Scholar 

  122. Krämer M, Durante M (2010) Ion beam transport calculations and treatment plans in particle therapy. Eur Phys J D 60:195–202

    Article  ADS  Google Scholar 

  123. García Gomez-Tejedor G, Fuss MC (eds) (2012) Radiation damage in biomolecular systems. Springer

    Google Scholar 

  124. Nikjoo H et al (2012) Interaction of radiation with matter, CRC Press

    Google Scholar 

  125. Muñoz A et al (2008) Single electron tracks in water vapour for energies below 100 eV. Int J Mass Spectrom 277:175–179

    Article  Google Scholar 

  126. Wälzlein C et al (2014) Low energy electron transport in non-uniform media. Nucl Instr Meth B 320:75–82

    Article  ADS  Google Scholar 

  127. Waelzlein C et al (2014) Simulation of dose enhancement for heavy atom nanoparticles irradiated by protons. Phys Med Biol 59:1441–1458

    Article  Google Scholar 

  128. Surdutovich E, Solov’yov AV (2014) Multiscale approach to the physics of radiation damage with ions. Eur Phys J D 68:353

    Article  ADS  Google Scholar 

  129. de Vera P, Garcia-Molina R, Abril I, Solov’yov AV (2013) Semiempirical model for the ion impact ionization of complex biological media. Phys Rev Lett 110:148104

    Article  ADS  Google Scholar 

  130. de Vera P, Abril I, Garcia-Molina R, Solov’yov AV (2013) Ionization of biomolecular targets by ion impact: input data for radiobiological applications. J Phys Conf Ser 438:012015

    Article  ADS  Google Scholar 

  131. Surdutovich E, Solov’yov AV (2015) Transport of secondary electrons and reactive species in ion tracks. Eur Phys J D 69:193

    Article  ADS  Google Scholar 

  132. Toulemonde M, Surdutovich E, Solov’yov AV (2009) Temperature and pressure spikes in ion-beam cancer therapy. Phys Rev E 80:031913

    Article  ADS  Google Scholar 

  133. Surdutovich E, Solov’yov AV (2010) Shock wave initiated by an ion passing through liquid water. Phys Rev E 82:051915

    Article  ADS  Google Scholar 

  134. Surdutovich E, Yakubovich AV, Solov’yov AV (2013) DNA damage due to thermomechanical effects caused by heavy ions propagating in tissue. Nucl Instr Meth B 314:63–65

    Article  ADS  Google Scholar 

  135. de Vera P, Currell FJ, Mason NJ, Solov’yov AV (2016) Molecular dynamics study of accelerated ion-induced shock waves in biological media. Eur Phys J D 70:183

    Google Scholar 

  136. Surdutovich E, Yakubovich AV, Solov’yov AV (2013) Biodamage via shock waves initiated by irradiation with ions. Sci Rep 3:1289

    Article  ADS  Google Scholar 

  137. Yakubovich AV, Surdutovich E, Solov’yov AV (2012) Thermomechanical damage of nucleosome by the shock wave initiated by ion passing through liquid water. Nucl Instr Meth B 279:135–139

    Article  ADS  Google Scholar 

  138. Yakubovich AV, Surdutovich E, Solov’yov AV (2012) Damage of DNA backbone by nanoscale shock waves. J Phys Conf Ser 373:012014

    Article  ADS  Google Scholar 

  139. Roots R, Okada S (1972) Protection of DNA molecules of cultured mammalian cells from radiation-induced single-strand scissions by various alcohols and SH compounds. Int J Radiat Biol Relat Stud Phys Chem Med 21:329–342

    Article  Google Scholar 

  140. Hirayama R et al (2009) Contributions of direct and indirect actions in cell killing by high-LET radiations. Radiat Res 171:212–218

    Article  Google Scholar 

  141. LaVerne JA (2000) Track effects of heavy ions in liquid water. Radiat Res 153:487–496

    Article  Google Scholar 

  142. Plante I, Cucinotta F (2008) Ionization and excitation cross sections for the interaction of HZE particles in liquid water and application to Monte Carlo simulation of radiation tracks. New J Phys 10:125020

    Article  Google Scholar 

  143. Friedland W, Jacob P, Bernhardt P, Paretzke HG, Dingfelder M (2003) Simulation of DNA damage after proton irradiation. Radiat Res 159:401–410

    Article  Google Scholar 

  144. Karamitros M et al (2014) Diffusion-controlled reactions modeling in Geant4-DNA. J Comput Phys 274:841–882

    Article  ADS  Google Scholar 

  145. Gervais B, Beuve M, Olivera GH, Galassi ME (2006) Numerical simulation of multiple ionization and high LET effects in liquid water radiolysis. Radiat Phys Chem 75:493–513

    Article  ADS  Google Scholar 

  146. Von Sonntag C (2007) Free-radical-induced DNA damage as approached by quantum-mechanical and Monte Carlo calculations: an overview from the standpoint of an experimentalist. In: Sabin JR, Brändas E (eds) Advances in quantum chemistry, vol 52. Academic Press, pp. 5–20

    Google Scholar 

  147. Hirayama R et al (2013) OH radicals from the indirect actions of X-rays induce cell lethality and mediate the majority of the oxygen enhancement effect. Radiat Res 180:514–523

    Article  Google Scholar 

  148. Sicard-Roselli C et al (2014) A new mechanism for hydroxyl radical production in irradiated nanoparticle solutions. Small 10:3338–3346

    Article  Google Scholar 

  149. Paudel N, Shvydka D, Parsai EI (2015) Comparative study of experimental enhancement in free radical generation against Monte Carlo modeled enhancement in radiation dose deposition due to the presence of high Z materials during irradiation of aqueous media. Int J Med Phys Clin Eng Radiat Oncol 4:300–307

    Article  Google Scholar 

  150. Zhang X-D et al (2009) Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy. Int J Nanomed 4:165–173

    Article  Google Scholar 

  151. Sanche L (2008) Low energy electron damage to DNA. In: Shukla M, Leszczynski J (eds) Radiation induced molecular phenomena in nucleic acids, vol 5. Springer, Netherlands, pp 531–575

    Google Scholar 

  152. Sanche L (2005) Low energy electron-driven damage in biomolecules. Eur Phys J D 35:367–390

    Article  ADS  Google Scholar 

  153. Sanche L (2009) Biological chemistry: beyond radical thinking. Nature 461:358–359

    Article  ADS  Google Scholar 

  154. Lu Q-B (2010) Effects and applications of ultrashort-lived prehydrated electrons in radiation biology and radiotherapy of cancer. Mutat Res 704:190–1999

    Article  ADS  Google Scholar 

  155. Fuss MC et al (2014) Current prospects on low energy particle track simulation for biomedical applications. Appl Radiat Isot 83B:159–164

    Article  Google Scholar 

  156. Elsässer T, Cunrath R, Krämer M, Scholz M (2008) Impact of track structure calculations on biological treatment planning in ion radiotherapy. New J Phys 10:075005

    Article  Google Scholar 

  157. Cobut V et al (1998) Monte Carlo simulation of fast electron and proton tracks in liquid water—I. Physical and physicochemical aspects. Radiat Phys Chem 51:229–243

    Article  ADS  Google Scholar 

  158. Tennyson J (2010) Electron-molecule collision calculations using the R-matrix method. Phys Rep 491:29–76

    Article  ADS  Google Scholar 

  159. Blanco F, Garcia G (2015) Interference effects in the electron and positron scattering from molecules at intermediate and high energies. Chem Phys Lett 635:321–327

    Article  Google Scholar 

  160. Pimblott SM, Laverne JA (2007) Production of low-energy electrons by ionizing radiation. Radiat Phys Chem 76:1244–1247

    Article  ADS  Google Scholar 

  161. Garrett WR (1975) Molecular scattering: convergence of close-coupling expansions in the presence of many open channels. Phys Rev A 11:1297–1302

    Article  ADS  Google Scholar 

  162. Blanco F, Ellis-Gibbings L, Garcia G (2016) Screening corrections for the interference contributions to the electron and positron scattering cross sections from polyatomic molecules. Chem Phys Lett 645:71–75

    Article  ADS  Google Scholar 

  163. Massey HSW, Burhop EHS, Gilbody HB (1970) Electronic and ionic impact phenomena, 2nd edn. In: Electron collisions with molecules and photo-ionization, vol 2. American Association for the Advancement of Science

    Google Scholar 

  164. Blanco F, Garcia G (2003) Improvements on the quasifree absorption model for electron scattering. Phys Rev A 67:022701

    Article  ADS  Google Scholar 

  165. Blanco F, Garcia G (2004) Screening corrections for calculation of electron scattering differential cross sections from polyatomic molecules. Phys Lett A 330:230–237

    Article  ADS  Google Scholar 

  166. Colmenares R, Sanz AG, Fuss MC, Blanco F, Garcia G (2014) Stopping power for electrons in pyrimidine in the energy range 20–3000 eV. Appl Radiat Isot 83B:91–94

    Article  Google Scholar 

  167. Oller JC, Ellis-Gibbings L, da Silva FF, Limao-Vieira P, Garcia G (2015) Novel experimental setup for time-of-flight mass spectrometry ion detection in collisions of anionic species with neutral gas-phase molecular targets. EPJ Tech Instr 2:13

    Article  Google Scholar 

  168. Jaffke T, Meinke M, Hashemi R, Christophorou LG, Illenberger E (1992) Dissociative electron attachment to singlet oxygen. Chem Phys Lett 193:62–68

    Article  ADS  Google Scholar 

  169. Belic DS, Hall RI (1981) Dissociative electron attachment to metastable oxygen (\(a^1 \Delta g\)). J Phys B At Mol Phys 14:365–373

    Article  ADS  Google Scholar 

  170. Hayashi S, Kuchitsu K (1976) Elastic scattering of electrons by molecules at intermediate energies. Calculation of double scattering effects in N\(_2\) and P\(_4\). Chem Phys Lett 41:575–579

    Article  ADS  Google Scholar 

  171. Almeida D et al (2012) Mass spectrometry of anions and cations produced in \(1-4\) keV H\(^-\), O\(^-\), and OH\(^-\) collisions with nitromethane, water, ethanol, and methanol. Int J Mass Spectrom 311:7–16

    Article  Google Scholar 

  172. Štefančíková L et al (2014) Cell localisation of gadolinium-based nanoparticles and related radiosensitising efficacy in glioblastoma cells. Cancer Nanotechnol 5:6

    Article  Google Scholar 

  173. Harrison KG, Lucas MW (1970) Secondary electron energy spectra from foils under light-ion bombardment. Phys Lett A 33:142

    Article  ADS  Google Scholar 

  174. Casta R, Champeaux J-P, Sence M, Moretto-Capelle P, Cafarelli P (2015) Comparison between gold nanoparticle and gold plane electron emissions: a way to identify secondary electron emission. Phys Med Biol 60:9095–9106

    Article  Google Scholar 

  175. Haberland H, Karrais M, Mall M, Thurner Y (1992) Thin films from energetic cluster impact: a feasibility study. J Vac Sci Technol A 10:3266–3271

    Article  ADS  Google Scholar 

  176. Kamalou O (2008) PhD Thesis, University of Caen

    Google Scholar 

  177. Alpen EL (1998) Radiation biophysics. Academic Press

    Google Scholar 

  178. Schardt D, Elsässer T, Schulz-Ertner D (2010) Heavy-ion tumor therapy: physical and radiobiological benefits. Rev Mod Phys 82:383–425

    Article  ADS  Google Scholar 

  179. Verkhovtsev AV, Korol AV, Solovyov AV (2015) Electron production by sensitizing gold nanoparticles irradiated by fast ions. J Phys Chem C 119:11000–11013

    Article  Google Scholar 

  180. Usami N, Kobayashi K, Furusawa Y, Frohlich H, Lacombe S, Le Sech C (2007) Irradiation of DNA loaded with platinum containing molecules by fast atomic ions C\(^{6+}\) and Fe\(^{26+}\). Int J Radiat Biol 83:569–576

    Article  Google Scholar 

  181. Butterworth KT, McMahon SJ, Currell FJ, Prise KM (2012) Physical basis and biological mechanisms of gold nanoparticle radiosensitization. Nanoscale 4:4830–4838

    Article  ADS  Google Scholar 

  182. Misawa M, Takahashi J (2011) Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV irradiations. Nanomed Nanotechnol 7:604–614

    Article  Google Scholar 

  183. Jain S et al (2011) Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol Biol Phys 79:531–539

    Article  Google Scholar 

  184. Chithrani DB et al (2010) Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 173:719–728

    Article  Google Scholar 

  185. McMahon SJ, Mendenhall M, Jain S, Currell F (2008) Radiotherapy in the presence of contrast agents: a general figure of merit and its application to gold nanoparticles. Phys Med Biol 53:5635–5651

    Article  Google Scholar 

  186. Ando K, Kase Y (2009) Biological characteristics of carbon-ion therapy. Int J Radiat Biol 85:715–728

    Article  Google Scholar 

  187. Furusawa Y et al (2000) Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated (3)He-, (12)C- and (20)Ne-ion beams. Radiat Res 154:485–496

    Article  Google Scholar 

  188. Hirayama R, Furusawa Y, Fukawa T, Ando K (2005) Repair kinetics of DNA-DSB induced by X-rays or carbon ions under oxic and hypoxic conditions. J Radiat Res 46:325–332

    Article  Google Scholar 

  189. Nakano T et al (2006) Carbon beam therapy overcomes the radiation resistance of uterine cervical cancer originating from hypoxia. Clin Cancer Res 12:2185–2190

    Article  Google Scholar 

  190. Combs SE et al (2012) PhaseI/II trial evaluating carbon ion radiotherapy for the treatment of recurrent rectal cancer: the PANDORA-01 trial. BMC Cancer 12:137

    Article  Google Scholar 

  191. Hirayama R et al (2013) Evaluation of SCCVII tumor cell survival in clamped and non-clamped solidtumors exposed to carbon-ion beams in comparison to X-rays. Mutat Res 756:146–151

    Article  Google Scholar 

  192. Rothkamm K, Barnard S, Moquet J, Ellender M, Rana Z, Burdak-Rothkamm S (2015) DNA damage foci: meaning and significance. Environ Mol Mutagen 56:491–504

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the European Union’s FP7 People Program (Marie Curie Actions) within the Initial Training Network No. 608163 “ARGENT”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bolsa Ferruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bolsa Ferruz, M. et al. (2017). New Research in Ionizing Radiation and Nanoparticles: The ARGENT Project. In: Solov’yov, A. (eds) Nanoscale Insights into Ion-Beam Cancer Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-43030-0_12

Download citation

Publish with us

Policies and ethics