Skip to main content

Review of Deep Learning Methods in Mammography, Cardiovascular, and Microscopy Image Analysis

  • Chapter
  • First Online:

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

Computerized algorithms and solutions in processing and diagnosis mammography X-ray, cardiovascular CT/MRI scans, and microscopy image play an important role in disease detection and computer-aided decision-making. Machine learning techniques have powered many aspects in medical investigations and clinical practice. Recently, deep learning is emerging a leading machine learning tool in computer vision and begins attracting considerable attentions in medical imaging. In this chapter, we provide a snapshot of this fast growing field specifically for mammography, cardiovascular, and microscopy image analysis . We briefly explain the popular deep neural networks and summarize current deep learning achievements in various tasks such as detection, segmentation, and classification in these heterogeneous imaging modalities. In addition, we discuss the challenges and the potential future trends for ongoing work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58(2):71–96

    Article  Google Scholar 

  2. Lauby-Secretan B, Scoccianti C, Loomis D, Benbrahim-Tallaa L, Bouvard V, Bianchini F, Straif K (2015) Breast-cancer screening–viewpoint of the IARC working group. New Engl J Med 372(24):2353–2358

    Article  Google Scholar 

  3. Giger ML, Pritzker A (2014) Medical imaging and computers in the diagnosis of breast cancer. In: SPIE optical engineering + applications. International Society for Optics and Photonics, p 918908

    Google Scholar 

  4. Oliver A, Freixenet J, Marti J, Perez E, Pont J, Denton ER, Zwiggelaar R (2010) A review of automatic mass detection and segmentation in mammographic images. Med Image Anal 14(2):87–110

    Article  Google Scholar 

  5. Tang J, Rangayyan RM, Xu J, El Naqa I, Yang Y (2009) Computer-aided detection and diagnosis of breast cancer with mammography: recent advances. IEEE Trans Inf Technol Biomed 13(2):236–251

    Article  Google Scholar 

  6. Kozegar E, Soryani M, Minaei B, Domingues I et al (2013) Assessment of a novel mass detection algorithm in mammograms. J Cancer Res Ther 9(4):592

    Article  Google Scholar 

  7. Beller M, Stotzka R, Müller TO, Gemmeke H (2005) An example-based system to support the segmentation of stellate lesions. In: Bildverarbeitung für die Medizin 2005. Springer, pp 475–479

    Google Scholar 

  8. te Brake GM, Karssemeijer N, Hendriks JH (2000) An automatic method to discriminate malignant masses from normal tissue in digital mammograms. Phys Med Biol 45(10):2843

    Article  Google Scholar 

  9. Campanini R, Dongiovanni D, Iampieri E, Lanconelli N, Masotti M, Palermo G, Riccardi A, Roffilli M (2004) A novel featureless approach to mass detection in digital mammograms based on support vector machines. Phys Med Biol 49(6):961

    Article  Google Scholar 

  10. Eltonsy NH, Tourassi GD, Elmaghraby AS (2007) A concentric morphology model for the detection of masses in mammography. IEEE Trans Med Imaging 26(6):880–889

    Article  Google Scholar 

  11. Sampat MP, Bovik AC, Whitman GJ, Markey MK (2008) A model-based framework for the detection of spiculated masses on mammographya. Med Phys 35(5):2110–2123

    Article  Google Scholar 

  12. Bellotti R, De Carlo F, Tangaro S, Gargano G, Maggipinto G, Castellano M, Massafra R, Cascio D, Fauci F, Magro R et al (2006) A completely automated cad system for mass detection in a large mammographic database. Med Phys 33(8):3066–3075

    Article  Google Scholar 

  13. Wei J, Sahiner B, Hadjiiski LM, Chan H-P, Petrick N, Helvie MA, Roubidoux MA, Ge J, Zhou C (2005) Computer-aided detection of breast masses on full field digital mammograms. Med Phys 32(9):2827–2838

    Article  Google Scholar 

  14. Ball JE, Bruce LM (2007) Digital mammographic computer aided diagnosis (cad) using adaptive level set segmentation. In: 29th annual international conference of the IEEE engineering in medicine and biology society, 2007. EMBS 2007. IEEE, pp 4973–4978

    Google Scholar 

  15. Rahmati P, Adler A, Hamarneh G (2012) Mammography segmentation with maximum likelihood active contours. Med Image Anal 16(6):1167–1186

    Article  Google Scholar 

  16. Cardoso JS, Domingues I, Oliveira HP (2014) Closed shortest path in the original coordinates with an application to breast cancer. Int J Pattern Recognit Artif Intell 29:1555002

    Google Scholar 

  17. Varela C, Timp S, Karssemeijer N (2006) Use of border information in the classification of mammographic masses. Phys Med Biol 51(2):425

    Article  Google Scholar 

  18. Shi J, Sahiner B, Chan H-P, Ge J, Hadjiiski L, Helvie MA, Nees A, Wu Y-T, Wei J, Zhou C et al (2008) Characterization of mammographic masses based on level set segmentation with new image features and patient information. Med Phys 35(1):280–290

    Article  Google Scholar 

  19. Domingues I, Sales E, Cardoso J, Pereira W (2012) Inbreast-database masses characterization. In: XXIII CBEB

    Google Scholar 

  20. LeCun Y, Bengio Y (1995) Convolutional networks for images, speech, and time series. In: The handbook of brain theory and neural networks, vol 3361

    Google Scholar 

  21. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: NIPS, vol 1, p 4

    Google Scholar 

  22. Farabet C, Couprie C, Najman L, LeCun Y (2013) Learning hierarchical features for scene labeling. IEEE Trans Pattern Anal Machi Intell 35(8):1915–1929

    Article  Google Scholar 

  23. Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, pp 580–587

    Google Scholar 

  24. Zhang Y, Sohn K, Villegas R, Pan G, Lee H (2015) Improving object detection with deep convolutional networks via bayesian optimization and structured prediction. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 249–258

    Google Scholar 

  25. Dhungel N, Carneiro G, Bradley AP (2015) Deep learning and structured prediction for the segmentation of mass in mammograms. In: Medical image computing and computer-assisted intervention–MICCAI 2015. Springer, pp 605–612

    Google Scholar 

  26. Dhungel N, Carneiro G, Bradley AP (2015) Tree re-weighted belief propagation using deep learning potentials for mass segmentation from mammograms. In: 2015 IEEE 12th international symposium on biomedical imaging (ISBI), pp 760–763

    Google Scholar 

  27. Dhungel N, Carneiro G, Bradley AP (2015) Deep structured learning for mass segmentation from mammograms. In: 2015 IEEE international conference on image processing (ICIP), pp 2950–2954

    Google Scholar 

  28. Heath M, Bowyer K, Kopans D, Moore R, Kegelmeyer P (2000) The digital database for screening mammography. In: Proceedings of the 5th international workshop on digital mammography, pp 212–218

    Google Scholar 

  29. Dubrovina A, Kisilev P, Ginsburg B, Hashoul S, Kimmel R (2016) Computational mammography using deep neural networks. In: Workshop on deep learning in medical image analysis (DLMIA)

    Google Scholar 

  30. Dhungel N, Carneiro G, Bradley A (2015) Automated mass detection in mammograms using cascaded deep learning and random forests. In: 2015 international conference on digital image computing: techniques and applications (DICTA), pp 1–8

    Google Scholar 

  31. Ertosun MG, Rubin DL (2015) Probabilistic visual search for masses within mammography images using deep learning. In: 2015 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE, pp 1310–1315

    Google Scholar 

  32. Arevalo J, González FA, Ramos-Pollán R, Oliveira JL, Lopez MAG (2016) Representation learning for mammography mass lesion classification with convolutional neural networks. Comput Methods Programs Biomed

    Google Scholar 

  33. Qiu Y, Yan S, Tan M, Cheng S, Liu H, Zheng B (2016) Computer-aided classification of mammographic masses using the deep learning technology: a preliminary study. In: SPIE medical imaging. International Society for Optics and Photonics, p 978520

    Google Scholar 

  34. Jiao Z, Gao X, Wang Y, Li J (2016) A deep feature based framework for breast masses classification. Neurocomputing 197:221–231

    Google Scholar 

  35. Carneiro G, Nascimento J, Bradley AP (2015) Unregistered multiview mammogram analysis with pre-trained deep learning models. In: Medical image computing and computer-assisted intervention – MICCAI 2015. Springer, Berlin, pp. 652–660

    Google Scholar 

  36. Kallenberg M, Petersen K, Nielsen M, Ng A, Diao P, Igel C, Vachon C, Holland K, Karssemeijer N, Lillholm M (2016) Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring

    Google Scholar 

  37. Petersen K, Nielsen M, Diao P, Karssemeijer N, Lillholm M (2014) Breast tissue segmentation and mammographic risk scoring using deep learning. In: Breast imaging. Springer, Berlin, pp 88–94

    Google Scholar 

  38. Qiu Y, Wang Y, Yan S, Tan M, Cheng S, Liu H, Zheng B (2016) An initial investigation on developing a new method to predict short-term breast cancer risk based on deep learning technology. In: SPIE medical imaging. International Society for Optics and Photonics, p 978521

    Google Scholar 

  39. Lloyd-Jones D, Adams R, Carnethon M et al (2009) Heart disease and stroke statistics – 2009 update. Circulation 119(3):21–181

    Article  Google Scholar 

  40. Heidenreich PA, Trogdon JG, Khavjou OA et al (2011) Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123:933–944

    Article  Google Scholar 

  41. Gulsun MA, Funka-Lea G, Sharma P, Rapaka S, Zheng Y (2016) Coronary centerline extraction via optimal flow paths and CNN path pruning. In: Proceedings of international conference on medical image computing and computer assisted intervention

    Google Scholar 

  42. Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D (2008) Four-chamber heart modeling and automatic segmentation for 3D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans Med Imaging 27(11):1668–1681

    Article  Google Scholar 

  43. Zheng Y (2015) Model based 3D cardiac image segmentation with marginal space learning. In: Medical image recognition, segmentation and parsing: methods, theories and applications. Elsevier, Amsterdam, pp 383–404

    Google Scholar 

  44. Carneiro G, Nascimento JC, Freitas A (2012) The segmentation of the left ventricle of the heart from ultrasound data using deep learning architectures and derivative-based search methods. IEEE Trans Image Process 21(3):968–982

    Article  MathSciNet  Google Scholar 

  45. Carneiro G, Nascimento JC (2013) Combining multiple dynamic models and deep learning architectures for tracking the left ventricle endocardium in ultrasound data. IEEE Trans Pattern Anal Mach Intell 35(11):2592–2607

    Article  Google Scholar 

  46. Ngo TA, Lu Z, Carneiro G (2016) Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med Image Anal 35:159–171

    Google Scholar 

  47. Ngo TA, Carneiro G (2014) Fully automated non-rigid segmentation with distance regularized level set evolution initialization and constrained by deep-structured inference. In: Proceedings of IEEE conference computer vision and pattern recognition, pp 1–8

    Google Scholar 

  48. Emad O, Yassine IA, Fahmy AS (2015) Automatic localization of the left ventricle in cardiac MRI images using deep learning. In: Proceedings of annual international conference of the IEEE engineering in medicine and biology society, pp 683–686

    Google Scholar 

  49. Zhen X, Wang Z, Islam A, Bhaduri M, Chan I, Li S (2016) Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation. Med Image Anal 30:120–129

    Article  Google Scholar 

  50. Avendi MR, Kheirkhah A, Jafarkhani H (2016) A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal 30:108–119

    Article  Google Scholar 

  51. Avendi MR, Kheradvar A, Jafarkhani H (2016) Fully automatic segmentation of heart chambers in cardiac MRI using deep learning. J Cardiovasc Magn Reson 18:351–353

    Article  Google Scholar 

  52. Chen H, Zheng Y, Park J-H, Heng PA, Zhou SK (2016) Iterative multi-domain regularized deep learning for anatomical structure detection and segmentation from ultrasound images. In: Proceedings of international conference medical image computing and computer assisted intervention

    Google Scholar 

  53. Wang S, Yin Y, Cao G, Wei B, Zheng Y, Yang G (2015) Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neruocomputing 149:708–717

    Article  Google Scholar 

  54. Li Q, Feng B, Xie L, Liang P, Zhang H, Wang T (2016) A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans Med Imaging 35(1):109–118

    Article  Google Scholar 

  55. Maji D, Santara A, Mitra P, Sheet D (2016) Ensemble of deep convolutional neural networks for learning to detect retinal vessels in fundus images. arXiv:1603.04833

  56. Haloi M (2015) Improved microaneurysm detection using deep neural networks. arXiv:1505.04424

  57. Chandrakumar T, Kathirvel R (2016) Classifying diabetic retinopathy using deep learning architecture. Int J Eng Res Technol 5(6):19–24

    Google Scholar 

  58. Wu A, Xu Z, Gao M, Buty M, Mollura DJ (2016) Deep vessel tracking: a generalized probabilistic approach via deep learning. In: Proceedings of IEEE international symposium on biomedical, imaging, pp 1363–1367

    Google Scholar 

  59. Melinscak M, Prentasic P, Loncaric S (2015) Retinal vessel segmentation using deep neural networks. In: Proceedings of international conference computer vision theory and application, pp 577–582

    Google Scholar 

  60. Fu H, Xu Y, Wong DWK, Liu J (2016) Retinal vessel segmentation via deep learning network and fully-connected conditional random fields. In: Proceedings of IEEE international symposium on biomedical, imaging, pp 698–701

    Google Scholar 

  61. Zheng Y, Liu D, Georgescu B, Nguyen H, Comaniciu D (2015) 3D deep learning for efficient and robust landmark detection in volumetric data. In: Proceedings of international conference on medical image computing and computer assisted intervention, pp 565–572

    Google Scholar 

  62. Ghesu FC, Krubasik E, Georgescu B, Singh V, Zheng Y, Hornegger J, Comaniciu D (2016) Marginal space deep learning: efficient architecture for volumetric image parsing. IEEE Trans Med Imaging 35(5):1217–1228

    Article  Google Scholar 

  63. Wolterink JM, Leiner T, de Vos BD, van Hamersvelt RW, Viergever MA, Isgum I (2016) Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med Image Anal 34:123–136

    Article  Google Scholar 

  64. Lesage D, Angelini ED, Bloch I, Funka-Lea G (2009) A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med Image Anal 13(6):819–845

    Article  Google Scholar 

  65. Zheng Y, Loziczonek M, Georgescu B, Zhou SK, Vega-Higuera F, Comaniciu D (2011) Machine learning based vesselness measurement for coronary artery segmentation in cardiac CT volumes. In: Proceedings of SPIE medical imaging, vol 7962, pp 1–12

    Google Scholar 

  66. Zheng Y, Tek H, Funka-Lea G (2013) Robust and accurate coronary artery centerline extraction in CTA by combining model-driven and data-driven approaches. In: Proceedings of international conference medical image computing and computer assisted intervention, pp 74–81

    Google Scholar 

  67. Wolterink JM, Leiner T, Coatrieux J-L, Kelm BM, Kondo S, Salgado RA, Shahzad R, Shu H, Snoeren M, Takx RA, van Vliet L, de Vos BD, van Walsum T, Willems TP, Yang G, Zheng Y, Viergever MA, Ium I (2016) An evaluation of automatic coronary artery calcium scoring with cardiac CT: the orCaScore challenge. Med Phys 43(5):2361–2373

    Article  Google Scholar 

  68. Sommer C, Gerlich DW (2013) Machine learning in cell biology teaching computers to recognize phenotypes. J Cell Sci 126(24):5529–5539

    Article  Google Scholar 

  69. Wernick MN, Yang Y, Brankov JG, Yourganov G, Strother SC (2010) Machine learning in medical imaging. IEEE Signal Process Mag 27(4):25–38

    Article  Google Scholar 

  70. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

    Article  Google Scholar 

  71. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. Book in preparation for MIT Press

    Google Scholar 

  72. Xing F, Yang L (2016) Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review. IEEE Rev Biomed Eng 99

    Google Scholar 

  73. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances neural information processing systems, pp 1097–1105

    Google Scholar 

  74. Hinton G, Deng L, Yu D, Dahl GE, Mohamed Ar, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath TN, Kingsbury B (2012) Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process Mag 29(6):82–97

    Google Scholar 

  75. Arganda-Carreras I et al (2015) Crowdsourcing the creation of image segmentation algorithms for connectomics. Front Neuroanat 9(142)

    Google Scholar 

  76. Veta M et al (2015) Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med Image Anal 20(1):237–248

    Article  Google Scholar 

  77. Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V (2015) Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model 55:263274

    Article  Google Scholar 

  78. Xiong HY et al (2015) The human splicing code reveals new insights into the genetic determinants of disease. Science 347(6218)

    Google Scholar 

  79. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86:2278–2324

    Article  Google Scholar 

  80. Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE conference on computer vision and pattern recognition, pp 580–587

    Google Scholar 

  81. Girshick R (2015) Fast r-cnn. In: 2015 IEEE international conference on computer vision, pp 1440–1448

    Google Scholar 

  82. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: 2015 IEEE conference on computer vision and pattern recognition, pp 3431–3440

    Google Scholar 

  83. Greenspan H, van Ginneken B, Summers RM (2016) Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 35(5):1153–1159

    Article  Google Scholar 

  84. LeCun Y, Kavukcuoglu K, Farabet C (2010) Convolutional networks and applications in vision. In: IEEE international symposium on ciruits and systems (ISCAS), pp 253–256

    Google Scholar 

  85. Lee H, Grosse R, Ranganath R, Ng AY (2009) Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th international conference on machine learning, pp 609–616

    Google Scholar 

  86. Lee H, Grosse R, Ranganath R, Ng AY (2011) Unsupervised learning of hierarchical representations with convolutional deep belief networks. Commun ACM 54(10):95–103

    Article  Google Scholar 

  87. Deng L, Yu D (2014) Deep learning: methods and applications. Found Trends Signal Process 3(3–4):197–387

    Article  MathSciNet  MATH  Google Scholar 

  88. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Networks 61:85–117. Published online 2014; based on TR arXiv:1404.7828 [cs.NE]

  89. Nielsen MA (2015) Neural networks and deep learning. Determination Press

    Google Scholar 

  90. Arel I, Rose DC, Karnowski TP (2010) Deep machine learning - a new frontier in artificial intelligence research [research frontier]. IEEE Comput Intell Mag 5(4):13–18

    Article  Google Scholar 

  91. Bengio Y (2009) Learning deep architectures for ai. Found Trends Mach Learn 2:1–127

    Article  MATH  Google Scholar 

  92. Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828

    Article  Google Scholar 

  93. Gurcan MN, Boucheron LE, Can A, Madabushi A, Rajpoot NM, Yener B (2009) Histopatological image analysis: a review. IEEE Rev Biomed Eng 2:147–171

    Article  Google Scholar 

  94. McCann MT, Ozolek JA, Castro CA, Parvin B, Kovacevic J (2015) Automated histology analysis: opportunities for signal processing. IEEE Signal Process Mag 32:78–87

    Article  Google Scholar 

  95. Veta M, Pluim J, van Diest P, Viergever M (2014) Breast cancer histopathology image analysis: a review. IEEE Trans Biomed Eng 61:1400–1411

    Article  Google Scholar 

  96. Irshad H, Veillard A, Roux L, Racoceanu D (2014) Methods for nuclei detection, segmentation, and classification in digital histopathology: a review – current status and fture potential. IEEE Rev Biomed Eng 7:97–114

    Article  Google Scholar 

  97. Ciresan DC, Giusti A, Gambardella LM, Schmidhuber J (2013) Mitosis detection in breast cancer histology images with deep neural networks. In: International conference medical image computing and computer-assisted intervention (MICCAI), vol 8150, pp 411–418

    Google Scholar 

  98. Xing F, Xie Y, Yang L (2015) An automatic learning-based framework for robust nucleus segmentation. IEEE Trans Med Imaging PP(99):1

    Google Scholar 

  99. Mao Y, Yin Z, Schober JM (2015) Iteratively training classifiers for circulating tumor cell detection. In: IEEE international symposium on biomedical imaging, pp 190–194

    Google Scholar 

  100. Wang J, MacKenzie JD, Ramachandran R, Chen DZ (2015) Neutrophils identification by deep learning and voronoi diagram of clusters. In: medical image computing and computer-assisted intervention – MICCAI 2015: 18th international conference, Munich, Germany, 5–9 October 2015, Proceedings, Part III, pp 226–233

    Google Scholar 

  101. Dong B, Shao L, Costa MD, Bandmann O, Frangi AF (2015) Deep learning for automatic cell detection in wide-field microscopy zebrafish images. In: IEEE international symposium on biomedical imaging, pp 772–776

    Google Scholar 

  102. Shkolyar A, Gefen A, Benayahu D, Greenspan H (2015) Automatic detection of cell divisions (mitosis) in live-imaging microscopy images using convolutional neural networks. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 743–746

    Google Scholar 

  103. Liu F, Yang L (2015) A novel cell detection method using deep convolutional neural network and maximum-weight independent set. In: International conference on medical image computing and computer-assisted intervention (MICCAI), vol 9351, pp 349–357

    Google Scholar 

  104. Xie Y, Xing F, Kong X, Yang L (2015) Beyond classification: structured regression for robust cell detection using convolutional neural network. In: International conference medical image computing and computer-assisted intervention (MICCAI), vol 9351, pp 358–365

    Google Scholar 

  105. Sirinukunwattana K, Raza SEA, Tsang YW, Snead DRJ, Cree IA, Rajpoot NM (2016) Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans Med Imaging 35(5):1196–1206

    Article  Google Scholar 

  106. Xie W, Noble JA, Zisserman A (2015) Microscopy cell counting with fully convolutional regression networks. In: MICCAI 1st workshop on deep learning in medical image analysis

    Google Scholar 

  107. Xie Y, Kong X, Xing F, Liu F, Su H, Yang L (2015) Deep voting: a robust approach toward nucleus localization in microscopy images. In: International conference on medical image computing and computer-assisted intervention (MICCAI), vol 9351, pp 374–382

    Google Scholar 

  108. Albarqouni S, Baur C, Achilles F, Belagiannis V, Demirci S, Navab N (2016) Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans Med Imaging 35(5):1313–1321

    Article  Google Scholar 

  109. van Grinsven MJJP, van Ginneken B, Hoyng CB, Theelen T, Snchez CI (2016) Fast convolutional neural network training using selective data sampling: application to hemorrhage detection in color fundus images. IEEE Trans Med Imaging 35(5):1273–1284

    Article  Google Scholar 

  110. Xu J, Xiang L, Liu Q, Gilmore H, Wu J, Tang J, Madabhushi A (2015) Stacked sparse autoencoder (ssae) for nuclei detection on breast cancer histopathology images

    Google Scholar 

  111. Razavian AS, Azizpour H, Sullivan J, Carlsson S (2014) CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the 2014 IEEE conference on computer vision and pattern recognition workshops, CVPRW’14, pp 512–519

    Google Scholar 

  112. Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J (2016) Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 35(5):1299–1312

    Article  Google Scholar 

  113. Ciresan D, Giusti A, Gambardella LM, Schmidhuber J (2012) Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in neural information processing systems, pp 2843–2851

    Google Scholar 

  114. Fakhry A, Peng H, Ji S (2016) Deep models for brain EM image segmentation novel insights and improved performance. Bioinformatics 32:2352–2358

    Article  Google Scholar 

  115. Ning F, Delhomme D, LeCun Y, Piano F, Bottou L, Barbano PE (2005) Toward automatic phenotyping of developing embryos from videos. IEEE Trans Image Process 14(9):1360–1371

    Article  Google Scholar 

  116. Song Y, Zhang L, Chen S, Ni D, Lei B, Wang T (2015) Accurate segmentation of cervical cytoplasm and nuclei based on multi-scale convolutional network and graph partitioning. IEEE Trans Biomed Eng 62:2421–2433

    Article  Google Scholar 

  117. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention – MICCAI 2015: 18th international conference, Munich, Germany, 5–9 October 2015, Proceedings, Part III, pp 234–241

    Google Scholar 

  118. Chen H, Qi X, Cheng J, Heng PA (2016) Deep contextual networks for neuronal structure segmentation. In: AAAI, pp1167–1173

    Google Scholar 

  119. Stollenga MF, Byeon W, Liwicki M, Schmidhuber J (2015) Parallel multi-dimensional lstm, with application to fast biomedical volumetric image segmentation. In: Advances in neural information processing systems, vol 28, pp 2980–2988

    Google Scholar 

  120. Su H, Xing F, Kong X, Xie Y, Zhang S, Yang L (2015) Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders. In: International conference on medical image computing and computer assisted intervention (MICCAI), vol 9351, pp 383–390

    Google Scholar 

  121. Gao Z, Wang L, Zhou L, Zhang J (2016) Hep-2 cell image classification with deep convolutional neural networks. IEEE J Biomed Health Inf PP(99):1

    Google Scholar 

  122. Chen CL, Mahjoubfar A, Tai L, Blaby IK, Huang A, Niazi KR, Jalali B (2016) Deep learning in label-free cell classification. Sci Rep 6(21471)

    Google Scholar 

  123. Xu Y, Jia Z, Ai Y, Zhang F, Lai M, Chang EIC (2015) Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation. In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 947–951

    Google Scholar 

  124. Xu Y, Mo T, Feng Q, Zhong P, Lai M, Chang EIC (2014) Deep learning of feature representation with multiple instance learning for medical image analysis. In: 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 1626–1630

    Google Scholar 

  125. Cruz-Roa AA, Ovalle JEA, Madabhushi A, Osorio FAG (2013) A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In: Medical image computing and computer-assisted intervention-MICCAI 2013, pp 403–410

    Google Scholar 

  126. Chang H, Zhou Y, Spellman P, Parvin B (2013) Stacked predictive sparse coding for classification of distinct regions in tumor histopathology. In: Proceedings of the IEEE international conference on computer vision, pp 169–176

    Google Scholar 

  127. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: convolutional architecture for fast feature embedding. arXiv:1408.5093

  128. Theano Development Team (2016), Theano: a Python framework for fast computation of mathematical expressions. arXiv:abs/1605.02688

  129. Abadi M et al (2015) TensorFlow: large-scale machine learning on heterogeneous systems. Software available from tensorflow.org

  130. Collobert R, Kavukcuoglu K, Farabet C (2011) Torch7: a matlab-like environment for machine learning. In: BigLearn, NIPS workshop

    Google Scholar 

  131. Vedaldi A, Lenc K (2015) Matconvnet – convolutional neural networks for matlab

    Google Scholar 

  132. Mamoshina P, Vieira A, Putin E, Zhavoronkov A (2016) Applications of deep learning in biomedicine. Mol Pharmaceutics 13(5):1445–1454

    Article  Google Scholar 

  133. Wang W, Zhang M, Chen G, Jagadish HV, Ooi BC, Tan KL (2016) Database meets deep learning: challenges and opportunities

    Google Scholar 

  134. Kothari S, Phan JH, Stokes TH, Wang MD (2013) Pathology imaging informatics for quantitative analysis of whole-slide images. J Am Med Inform Assoc 20(6):1099–1108

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Carneiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carneiro, G., Zheng, Y., Xing, F., Yang, L. (2017). Review of Deep Learning Methods in Mammography, Cardiovascular, and Microscopy Image Analysis. In: Lu, L., Zheng, Y., Carneiro, G., Yang, L. (eds) Deep Learning and Convolutional Neural Networks for Medical Image Computing. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-42999-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42999-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42998-4

  • Online ISBN: 978-3-319-42999-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics