Skip to main content

Accelerated Molecular Dynamics Methods in a Massively Parallel World

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Book cover Handbook of Materials Modeling

Abstract

As high-performance computing systems now rely on hardware parallelism for continuous improvements in performance, the timescales accessible to direct molecular dynamics (MD) remain limited by the relatively stagnant performance of a single processor. While spatial decomposition allows extremely large systems to be simulated for short periods of time, alternative methods are needed to extend these simulations to significantly longer timescales. Although parallel means to produce long-timescale trajectories have been known since the late nineteen-nineties, several newer methodologies falling under the umbrella of accelerated molecular dynamics (AMD) have recently been developed with parallelism in mind. In this chapter, we review the current state-of-the-art in replica-based AMD and review several additional means of parallel scaling. Following a brief introduction to the serial AMD procedures, the chapter is organized into three general categories of parallel extensions: replication, speculation, and localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Audouze C, Massot M, Volz S (2009) Symplectic multi-time step parareal algorithms applied to molecular dynamics. https://hal.archives-ouvertes.fr/hal-00358459

  • Germann TC, Kadau K (2008) Trillion-atom molecular dynamics becomes a reality. Int J Mod Phys C 19(09):1315–1319

    Article  ADS  Google Scholar 

  • Henkelman G, Jónsson H (2001) Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table. J Chem Phys 115(21):9657–9666

    Article  ADS  Google Scholar 

  • Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904

    Article  ADS  Google Scholar 

  • Huang R, Lo LT, Wen Y, Voter AF, Perez D (2017) Cluster analysis of accelerated molecular dynamics simulations: a case study of the decahedron to icosahedron transition in pt nanoparticles. J Chem Phys 147(15):152717

    Article  ADS  Google Scholar 

  • Kim SY, Perez D, Voter AF (2013) Local hyperdynamics. J Chem Phys 139(14):144110

    Article  ADS  Google Scholar 

  • Le Bris C, Lelivre T, Luskin M, Perez D (2012) A mathematical formalization of the parallel replica dynamics. Monte Carlo Methods Appl 18(2):119–146

    MathSciNet  MATH  Google Scholar 

  • Martínez E, Marian J, Kalos M, Perlado J (2008) Synchronous parallel kinetic Monte Carlo for continuum diffusion-reaction systems. J Comput Phys 227(8):3804–3823

    Article  ADS  MathSciNet  Google Scholar 

  • Martínez E, Monasterio P, Marian J (2011) Billion-atom synchronous parallel kinetic Monte Carlo simulations of critical 3D Ising systems. J Comput Phys 230(4):1359–1369

    Article  ADS  Google Scholar 

  • Martínez E, Uberuaga BP, Voter AF (2014) Sublattice parallel replica dynamics. Phys Rev E 89:063308

    Article  ADS  Google Scholar 

  • Miron RA, Fichthorn KA (2003) Accelerated molecular dynamics with the bond-boost method. J Chem Phys 119(12):6210–6216

    Article  ADS  Google Scholar 

  • Niklasson AMN, Mniszewski SM, Negre CFA, Cawkwell MJ, Swart PJ, Mohd-Yusof J, Germann TC, Wall ME, Bock N, Rubensson EH, Djidjev H (2016) Graph-based linear scaling electronic structure theory. J Chem Phys 144(23):234101

    Article  ADS  Google Scholar 

  • Perez D, Uberuaga BP, Shim Y, Amar JG, Voter AF (2009) Accelerated molecular dynamics methods: introduction and recent developments. Ann Rep Comp Chem 5:79–98

    Google Scholar 

  • Perez D, Uberuaga BP, Voter AF (2015) The parallel replica dynamics method coming of age. Comput Mater Sci 100(Part B):90–103

    Article  Google Scholar 

  • Perez D, Cubuk ED, Waterland A, Kaxiras E, Voter AF (2016) Long-time dynamics through parallel trajectory splicing. J Chem Theory Comput 12(1):18–28

    Article  Google Scholar 

  • Perez D, Huang R, Voter AF (2018) Long-time molecular dynamics simulations on massively-parallel platforms: a comparison of parallel replica dynamics and parallel trajectory splicing. J Mater Res 33(7):813822

    Article  Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117(1):1–19

    Article  ADS  Google Scholar 

  • Shaw DE, Deneroff MM, Dror RO, Kuskin JS, Larson RH, Salmon JK, Young C, Batson B, Bowers KJ, Chao JC et al (2008) Anton, a special-purpose machine for molecular dynamics simulation. Commun ACM 51(7):91–97

    Article  Google Scholar 

  • Shim Y, Amar JG (2005) Semirigorous synchronous sublattice algorithm for parallel kinetic monte carlo simulations of thin film growth. Phys Rev B 71:125432

    Article  ADS  Google Scholar 

  • Shim Y, Amar JG, Uberuaga BP, Voter AF (2007) Reaching extended length scales and time scales in atomistic simulations via spatially parallel temperature-accelerated dynamics. Phys Rev B 76:205439

    Article  ADS  Google Scholar 

  • Shim Y, Callahan NB, Amar JG (2013) Localized saddle-point search and application to temperature-accelerated dynamics. J Chem Phys 138(9):094101

    Article  ADS  Google Scholar 

  • Smith JS, Isayev O, Roitberg AE (2017) Ani-1: an extensible neural network potential with dft accuracy at force field computational cost. Chem Sci 8:3192–3203

    Article  Google Scholar 

  • Srensen MR, Voter AF (2000) Temperature-accelerated dynamics for simulation of infrequent events. J Chem Phys 112(21):9599–9606

    Article  ADS  Google Scholar 

  • Uberuaga BP, Montalenti F, Germann TC, Voter AF (2005) Accelerated molecular dynamics methods. In: Handbook of materials modeling. Springer Netherlands, Dordrecht, pp 629–648

    Chapter  Google Scholar 

  • Vineyard GH (1957) Frequency factors and isotope effects in solid state rate processes. J Phys Chem Solids 3(1):121–127

    Article  ADS  Google Scholar 

  • Voter AF (1988) Simulation of the layer-growth dynamics in silver films: dynamics of adatom and vacancy clusters on ag (100). In: 31st annual technical symposium. International Society for Optics and Photonics, San Diego, pp 214–226

    Google Scholar 

  • Voter AF (1997) A method for accelerating the molecular dynamics simulation of infrequent events. J Chem Phys 106(11):4665–4677

    Article  ADS  Google Scholar 

  • Voter AF (1998) Parallel replica method for dynamics of infrequent events. Phys Rev B 57(22):R13985

    Article  ADS  Google Scholar 

  • Voter AF, Germann TC (1998) Accelerating the dynamics of infrequent events: Combining hyperdynamics and parallel replica dynamics to treat epitaxial layer growth. In: MRS Proceedings, San Francisco, vol 528

    Google Scholar 

  • Zamora RJ, Uberuaga BP, Perez D, Voter AF (2016a) The modern temperature-accelerated dynamics approach. Ann Rev Chem Biomol Eng 7(1):3.1–3.24

    Article  Google Scholar 

  • Zamora RJ, Voter AF, Perez D, Perriot R, Uberuaga BP (2016b) The effects of cation-anion clustering on defect migration in mgal2o4. Phys Chem Chem Phys 18:19647–19654

    Article  Google Scholar 

  • Zamora RJ, Perez D, Voter AF (2018) Speculation and replication in temperature accelerated dynamics. J Mater Res 33(7):823–834

    Article  ADS  Google Scholar 

  • Zepeda-Ruiz LA, Stukowski A, Oppelstrup T, Bulatov VV (2017) Probing the limits of metal plasticity with molecular dynamics simulations. Nature 550(7677):492–495

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Department of Energy (DOE), Office of Basic Energy Sciences, Materials Sciences and Engineering Division. This work was also supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two US Department of Energy organizations (Office of Science and the National Nuclear Security Administration), responsible for the planning and preparation of a capable exascale ecosystem, including software, applications, hardware, advanced system engineering, and early testbed platforms, in support of the nation’s exascale computing imperative. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the DOE, under contract DE-AC52-O6NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Zamora .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zamora, R., Perez, D., Martinez, E., Uberuaga, B., Voter, A. (2020). Accelerated Molecular Dynamics Methods in a Massively Parallel World. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling . Springer, Cham. https://doi.org/10.1007/978-3-319-42913-7_25-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42913-7_25-2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42913-7

  • Online ISBN: 978-3-319-42913-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Accelerated Molecular Dynamics Methods in a Massively Parallel World
    Published:
    10 October 2019

    DOI: https://doi.org/10.1007/978-3-319-42913-7_25-2

  2. Original

    Accelerated Molecular Dynamics Methods in a Massively Parallel World
    Published:
    05 July 2018

    DOI: https://doi.org/10.1007/978-3-319-42913-7_25-1