Skip to main content

Nanofibers and Biofilm in Materials Science

  • Living reference work entry
  • First Online:
Handbook of Nanofibers

Abstract

In this chapter biofilms are introduced. Also their relationship with nanofibers is described from the viewpoint of materials science. To start, the background information for this topic is presented and explained. Also we show how biofilm causes industrial problems. The relationships of biofilms to nanofibers are classified in two main ways. One of them is the bacterial nanofiber which they produce by themselves. The other refers to the role of the fibers. A fiber seems to control the shape of biofilms which the aggregation of bacteria could produce. On the other hand, another fiber could play an important role for the attachment of bacteria onto material surfaces. Therefore, all of the mentioned examples would lead to the surface phenomena occurring on material surfaces. Finally, we present and describe a polymer brush coating as a countermeasure against biofilm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Persano L, Camposeo A, Tekmen C, Pisignano D (2013) Industrial upscaling of electrospinning and applications of polymer nanofibers: a review. Macromol Mater Eng 298(5): 504–520

    Article  CAS  Google Scholar 

  2. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15): 2223–2253

    Article  CAS  Google Scholar 

  3. Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrost 35(2–3):151–160

    Article  CAS  Google Scholar 

  4. Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9(3):40–50

    Article  CAS  Google Scholar 

  5. Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1(2):205–221

    Article  CAS  Google Scholar 

  6. Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28(1):142–150

    Article  CAS  Google Scholar 

  7. Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Pötschke P (2004) Carbon nanofibers for composite applications. Carbon 42(5):1153–1158

    Article  CAS  Google Scholar 

  8. Patel AC, Li S, Wang C, Zhang W, Wei Y (2007) Electrospinning of porous silica nanofibers containing silver nanoparticles for catalytic applications. Chem Mater 19(6):1231–1238

    Article  CAS  Google Scholar 

  9. Characklis WG, Marshall KC (eds) (1990) Biofilms. Wiley, New York

    Google Scholar 

  10. Doyle RJ (1999) Biofilms, Methods in enzymology. Academic, San Diego, p xxxvii, 720 p

    Google Scholar 

  11. Lappin-Scott HM, Costerton JW (2003) Microbial biofilms (Biotechnology research). Cambridge University Press, Cambridge, UK, p 328

    Google Scholar 

  12. Percival SL, Malic S, Cruz H, Williams DW (2011) Introduction to biofilms. In: Percival SL (ed) Biofilms and veterinary medicine. Springer, Berlin/Heidelberg, pp 41–68

    Chapter  Google Scholar 

  13. Lear G, Lewis G (2012) Microbial biofilms. Caister Academic Poole, the UK

    Google Scholar 

  14. Lewandowski Z, Beyenal H (eds) (2014) Fundamentals of biofilm research, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  15. Kanematsu H, Barry DM (2015) Biofilm and materials science. Springer, New York, p 196

    Google Scholar 

  16. McBain AJ, Bartolo RG, Catrenich CE, Charbonneau D, Ledder RG, Rickard AH, Symmons SA, Gilbert P (2003) Microbial characterization of biofilms in domestic drains and the establishment of stable biofilm microcosms. Appl Environ Microbiol 69(1):177–185

    Article  CAS  Google Scholar 

  17. Prakash B, Veeregowda B, Krishnappa G (2003) Biofilms: a survival strategy of bacteria. Curr Sci 85:1299–1307

    Google Scholar 

  18. Rayner J, Veeh R, Flood J (2004) Prevalence of microbial biofilms on selected fresh produce and household surfaces. Int J Food Microbiol 95(1):29–39

    Article  CAS  Google Scholar 

  19. Schooling SR, Beveridge TJ (2006) Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol 188(16):5945–5957

    Article  CAS  Google Scholar 

  20. Eboigbodin KE, Seth A, Biggs CA (2008) A review of biofilms in domestic plumbing. Am Water Works Assoc J 100(10):131

    Article  CAS  Google Scholar 

  21. Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18(9):1049–1056

    Article  CAS  Google Scholar 

  22. Kim H, Bang J, Beuchat LR, Ryu J-H (2008) Fate of Enterobacter sakazakii attached to or in biofilms on stainless steel upon exposure to various temperatures or relative humidities. J Food Prot 71(5):940–945

    Article  Google Scholar 

  23. Neth K, Girard D, Albrecht JA (2008) Determination of biofilms on plastic cutting boards. Rurals 3(1):5

    Google Scholar 

  24. Gupta S (2012) Escherichia coli O157: H7 control in nonintact meat products and inhibition of Listeria monocytogenes biofilms on kitchen surfaces. University Press of Colorado, Louisville, the USA

    Google Scholar 

  25. Kazda, M, Zak M, Bengelsdorf F (2012) Effects of additional biofilm carriers on anaerobic digestion of food waste: results from laboratory experiments and a full-scale application.“Anaerobic Digestion of Solid Biomass and Biowaste”, International Symposium, February 2012, Berlin

    Google Scholar 

  26. Rossi EM, Scapin D, Tondo EC (2013) Survival and transfer of microorganisms from kitchen sponges to surfaces of stainless steel and polyethylene. J Infect Dev Ctries 7(03):229–234

    Article  CAS  Google Scholar 

  27. Buse HY, Lu J, Lu X, Mou X, Ashbolt NJ (2014) Microbial diversities (16S and 18S rRNA gene pyrosequencing) and environmental pathogens within drinking water biofilms grown on the common premise plumbing materials unplasticized polyvinylchloride and copper. FEMS Microbiol Ecol 88(2):280–295

    Article  CAS  Google Scholar 

  28. Chern EC, King D, Haugland R, Pfaller S (2015) Evaluation of quantitative polymerase chain reaction assays targeting Mycobacterium avium, M. Intracellulare, and M. Avium subspecies paratuberculosis in drinking water biofilms. J Water Health 13(1):131–139

    Article  Google Scholar 

  29. Rueda J, Piamonte C, Zea M, Moreno D, Triana L, Martínez J, Lemus M, Rodríguez Susa M (2015) B. cereus and A. hydrophila in biofilm-water drinking household network IWA Specialized Conference “Biofilms in drinking water systems from treatment to tap’, August, 2015, Arosa, Switzerland

    Google Scholar 

  30. Honda JR, Hasan NA, Davidson RM, Williams MD, Epperson LE, Reynolds PR, Smith T, Iakhiaeva E, Bankowski MJ, Wallace RJ Jr (2016) Environmental nontuberculous mycobacteria in the Hawaiian Islands. PLoS Negl Trop Dis 10(10):e0005068

    Article  Google Scholar 

  31. Storey M, Ashbolt N (2001) Persistence of two model enteric viruses (B40-8 and MS-2 bacteriophages) in water distribution pipe biofilms. Water Sci Technol 43:133–138

    Article  CAS  Google Scholar 

  32. Hunter PR, Colford JM, Lechevallier MW, Binder S, Berger PS (2001) Waterborne diseases. Emerg Infect Dis 7:544

    Article  CAS  Google Scholar 

  33. Storey M, Ashbolt N (2002) A comparison of methods and models for the analysis of water distribution pipe biofilms. Water Sci Technol Water Supply 2:73–80

    Article  Google Scholar 

  34. Storey M, Ashbolt N (2003) A risk model for enteric virus accumulation and release from recycled water distribution pipe biofilms. Water Sci Technol Water Supply 3:93–100

    Article  CAS  Google Scholar 

  35. Storey M, Ashbolt N (2003) Enteric virions and microbial biofilms-a secondary source of public health concern? Water Sci Technol 48:97–104

    Article  CAS  Google Scholar 

  36. Jang A, Szabo J, Hosni AA, Coughlin M, Bishop PL (2006) Measurement of chlorine dioxide penetration in dairy process pipe biofilms during disinfection. Appl Microbiol Biotechnol 72:368–376

    Article  CAS  Google Scholar 

  37. Gomez-Alvarez V, Revetta RP, Santo Domingo JW (2012) Metagenome analyses of corroded concrete wastewater pipe biofilms reveal a complex microbial system. BMC Microbiol 12:122

    Article  CAS  Google Scholar 

  38. Bomo A-M, Storey M, Ashbolt N (2004) Detection, integration and persistence of aeromonads in water distribution pipe biofilms. J Water Health 2:83–96

    Article  CAS  Google Scholar 

  39. Rajagopal S, Jenner HA, Venugopalan VP (eds) (2012) Operational and environmental consequences of large industrial cooling water system. Springer, New York/Dordrecht/Heidelberg/London

    Google Scholar 

  40. Flemming HC (2002) Biofouling in water systems – cases, causes and countermeasures. Appl Microbiol Biotechnol 59:629–640

    Article  CAS  Google Scholar 

  41. Flemming H-C, Geesey GG (1991) Biofouling and biocorrosion in industrial water systems: proceedings of the International Workshop on Industrial Biofouling and Biocorrosion, Stuttgart, 13–14 Sept 1990. Springer, Berlin/New York

    Book  Google Scholar 

  42. Geesey GG, Lewandowski Z, Flemming H-C (1994) Biofouling and biocorrosion in industrial water systems. Lewis Publishers, Boca Raton

    Google Scholar 

  43. Heitz E, Flemming H-C, Sand W (1996) Microbially influenced corrosion of materials: scientific and engineering aspects. Springer, Berlin/New York

    Book  Google Scholar 

  44. Flemming H-C (2009) Marine and industrial biofouling. Springer, Berlin

    Book  Google Scholar 

  45. Lindsay D, Von Holy A (2006) Bacterial biofilms within the clinical setting: what healthcare professionals should know. J Hosp Infect 64:313–325

    Article  CAS  Google Scholar 

  46. Walker J, Jhutty A, Parks S, Wills C, Copley V, Turton J, Hoffman P, Bennett A (2014) Investigation of healthcare-acquired infections associated with Pseudomonas aeruginosa biofilms in taps in neonatal units in Northern Ireland. J Hosp Infect 86:16–23

    Article  CAS  Google Scholar 

  47. Nicolle LE (2014) Catheter associated urinary tract infections. Antimicrob Resist Infect Control 3:23

    Article  Google Scholar 

  48. Cohen SH, Gerding DN, Johnson S, Kelly CP, Loo VG, Mcdonald LC, Pepin J, Wilcox MH (2010) Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect Control Hosp Epidemiol 31:431–455

    Article  Google Scholar 

  49. Karpanen T, Worthington T, Hendry E, Conway BR, Lambert PA (2008) Antimicrobial efficacy of chlorhexidine digluconate alone and in combination with eucalyptus oil, tea tree oil and thymol against planktonic and biofilm cultures of Staphylococcus epidermidis. J Antimicrob Chemother 62:1031–1036

    Article  CAS  Google Scholar 

  50. Ryder MA (2005) Catheter-related infections: it’s all about biofilm. Top Adv Pract Nurs J 5:1–6

    Google Scholar 

  51. Murphy CN, Clegg S (2012) Klebsiella pneumoniae and type 3 fimbriae: nosocomial infection, regulation and biofilm formation. Future Microbiol 7:991–1002

    Article  CAS  Google Scholar 

  52. Curran E (2001) Reducing the risk of healthcare-acquired infection. Nurs Stand (through 2013) 16:45

    Article  CAS  Google Scholar 

  53. Dunlop P, Sheeran C, Byrne J, Mcmahon M, Boyle M, Mcguigan K (2010) Inactivation of clinically relevant pathogens by photocatalytic coatings. J Photochem Photobiol A Chem 216:303–310

    Article  CAS  Google Scholar 

  54. Loveday H, Wilson J, Kerr K, Pitchers R, Walker J, Browne J (2014) Association between healthcare water systems and Pseudomonas aeruginosa infections: a rapid systematic review. J Hosp Infect 86:7–15

    Article  CAS  Google Scholar 

  55. Hermansson M (1999) The DLVO theory in microbial adhesion. Colloids Surf B: Biointerfaces 14(1):105–119

    Article  CAS  Google Scholar 

  56. Hori K, Matsumoto S (2010) Bacterial adhesion: from mechanism to control. Biochem Eng J 48(3):424–434

    Article  CAS  Google Scholar 

  57. van Loosdrecht MC, Lyklema J, Norde W, Zehnder AJ (1990) Influence of interfaces on microbial activity. Microbiol Rev 54(1):75–87

    Google Scholar 

  58. Kanematsu H, Barry DM, Ikegai H, Yoshitake M, Mizunoe Y (2017) Biofilm evaluation methods outside body to inside – problem presentations for the future. Med Res Arch 5(8):1–17

    Google Scholar 

  59. Telegdi J, Keresztes Z, Pálinkás G, Kálmán E, Sand W (1998) Microbially influenced corrosion visualized by atomic force microscopy. Appl Phys A Mater Sci Process 66:S639–S642

    Article  CAS  Google Scholar 

  60. El Din AS, Saber TMH, Hammoud AA (1996) Biofilm formation on stainless steels in Arabian gulf water. Desalination 107(3):251–264

    Article  Google Scholar 

  61. LeChevallier MW, Lowry CD, Lee RG, Gibbon DL (1993) Examining the relationship between iron corrosion and the disinfection of biofilm bacteria. J Am Water Works Assoc 85:111–123

    Article  CAS  Google Scholar 

  62. Bryers JD (2008) Medical biofilms. Biotechnol Bioeng 100(1):1–18

    Article  CAS  Google Scholar 

  63. Otto M (2008) Staphylococcal biofilms. Bacterial Biofilms 322:207–228

    Article  CAS  Google Scholar 

  64. Habash M, Reid G (1999) Microbial biofilms: their development and significance for medical device – related infections. J Clin Pharmacol 39(9):887–898

    Article  CAS  Google Scholar 

  65. Jass J, Surman S, Walker JT (2003) Microbial biofilms in medicine. In: Medical biofilms: detection, prevention and control. Wiley, Chichester, pp 1–28

    Chapter  Google Scholar 

  66. Wolcott RD, Ehrlich GD (2008) Biofilms and chronic infections. JAMA 299(22):2682–2684

    Article  CAS  Google Scholar 

  67. Reid G (1999) Biofilms in infectious disease and on medical devices. Int J Antimicrob Agents 11(3):223–226

    Article  CAS  Google Scholar 

  68. Iverson WP (1987) Microbial corrosion of metals. Adv Appl Microbiol 32:1–36

    Article  CAS  Google Scholar 

  69. Hamilton WA (2003) Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19(1):65–76

    Article  CAS  Google Scholar 

  70. Little BJ, Mansfelt FB, Arps PJ, Earthman JC (2007) Microbiologically influenced corrosion. Wiley VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  71. Videla HA, Herrera LK (2005) Microbiologically influenced corrosion: looking to the future. Int Microbiol 8(3):169

    CAS  Google Scholar 

  72. Little B, Wagner P, Mansfeld F (1991) Microbiologically influenced corrosion of metals and alloys. Int Mater Rev 36(1):253–272

    Article  CAS  Google Scholar 

  73. Javaherdashti R (1999) A review of some characteristics of MIC caused by sulfate-reducing bacteria: past, present and future. Anti-Corros Methods Mater 46(3):173–180

    Article  CAS  Google Scholar 

  74. Little BJ, Ray RI, Pope RK (2000) Relationship between corrosion and the biological sulfur cycle: a review. Corrosion 56(4):433–443

    Article  CAS  Google Scholar 

  75. Castaneda H, Benetton XD (2008) SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions. Corros Sci 50(4):1169–1183

    Article  CAS  Google Scholar 

  76. Angell P, Urbanic K (2000) Sulphate-reducing bacterial activity as a parameter to predict localized corrosion of stainless alloys. Corros Sci 42(5):897–912

    Article  CAS  Google Scholar 

  77. Xu D, Gu T (2011) Bioenergetics explains when and why more severe MIC pitting by SRB can occur. Corrosion/2011 paper. p 11426

    Google Scholar 

  78. Videla HA, Characklis WG (1992) Biofouling and microbially influenced corrosion. Int Biodeter Biodegr 29(3–4):195–212

    Article  CAS  Google Scholar 

  79. Lebeaux D, Chauhan A, Rendueles O, Beloin C (2013) From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens 2(2):288–356

    Article  CAS  Google Scholar 

  80. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Am Assoc Adv Sci 284(5418):1318–1322

    CAS  Google Scholar 

  81. Kanematsu H, Hirai N, Miura Y, Tanaka M, Kogo T, Itoh H (2013) Various metals from water by biofilm from an ambient germs in a reaction container. In: Materials science and technology, Montreal, pp 2154–2161 MS & T 2013

    Google Scholar 

  82. Braithwaite CJ, Taylor JD, Glover EA (2000) Marine carbonate cements, biofilms, Biomineralization, and Skeletogeneis: some bivalves do it all. J Sediment Res 70(5):1129–1138

    Article  CAS  Google Scholar 

  83. Reith F, Rogers SL, McPhail DC, Webb D (2006) Biomineralization of gold: biofilms on Bacterioform gold. Science 313(July):233–236

    Article  CAS  Google Scholar 

  84. Gillan DC, De Ridder C (2001) Accumulation of a ferric mineral in the biofilm of Montacuta ferruginosa (Mollusca, Bivalvia). Biomineralization, bioaccumulation, and inference of paleoenvironments. Chem Geol 177(3):371–379

    Article  CAS  Google Scholar 

  85. Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72(11):7345–7348

    Article  CAS  Google Scholar 

  86. Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7(5):375

    Article  CAS  Google Scholar 

  87. Nevin KP, Richter H, Covalla SF, Johnson JP, Woodard TL, Orloff AL, Lovley DR (2008) Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells. Environ Microbiol 10(10):2505–2514

    Article  CAS  Google Scholar 

  88. Hirai N (2015) Energy problems – fuel cell. In: Kanematsu H, Barry DM (eds) Biofilm and materials science. Springer International Publishing, New York, pp 125–133

    Google Scholar 

  89. Macnab RM (2003) How bacteria assemble flagella. Annu Rev Microbiol 57(1):77–100

    Article  CAS  Google Scholar 

  90. Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19

    Article  CAS  Google Scholar 

  91. Adler J (1975) Chemotaxis in bacteria. Annu Rev Biochem 44(1):341–356

    Article  CAS  Google Scholar 

  92. An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res A 43(3):338–348

    Article  CAS  Google Scholar 

  93. Reid G, Sobel JD (1987) Bacterial adherence in the pathogenesis of urinary tract infection: a review. Rev Infect Dis 9(3):470–487

    Article  CAS  Google Scholar 

  94. Mattick JS (2002) Type IV pili and twitching motility. Annu Rev Microbiol 56(1):289–314

    Article  CAS  Google Scholar 

  95. Proft T, Baker EN (2009) Pili in gram-negative and gram-positive bacteria – structure, assembly and their role in disease. Cell Mol Life Sci 66(4):613–635

    Article  CAS  Google Scholar 

  96. Lee GM, Bishop P (2013) Microbiology: and infection control for health professional, 5th edn. Pearson Australia, Frenchs Forest

    Google Scholar 

  97. Cookson AL, Cooley WA, Woodward MJ (2002) The role of type 1 and curli fimbriae of Shiga toxin-producing Escherichia coli in adherence to abiotic surfaces. Int J Med Microbiol 292(3–4):195–205

    Article  CAS  Google Scholar 

  98. Iida K-i, Mizunoe Y, Wai SN, Yoshida S-i (2001) Type 1 fimbriation and its phase Swiching in Diarrheagenic Escherichia coli strains. Clin Diagn Lab Immunol 8(3):489–495

    CAS  Google Scholar 

  99. Beloin C, Roux A, Ghigo JM (2008) Escherichia coli biofilms. In: Romeo T (ed) Bacterial biofilms. Springer, Berlin/Heidelberg, pp 249–289

    Chapter  Google Scholar 

  100. Kikuchi T, Mizunoe Y, Takade A, Naito S (2005) Curli fibers are required for development of biofilm architecture in escherichia coli K-12 and enhance bacterial adherence to human uroepithelial cells. Microbiol Immunol 49(9):875–884

    Article  CAS  Google Scholar 

  101. Prigent Combaret C, Prensier G, Le Thi TT, Vidal O, Lejeune P, Dorel C (2000) Developmental pathway for biofilm formation in curli producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol 2(4):450–464

    Article  CAS  Google Scholar 

  102. Lee HJ, Michielsen S (2006) Lotus effect: superhydrophobicity. J Text Inst 97(5):455–462

    Article  Google Scholar 

  103. Marmur A (2004) The lotus effect: superhydrophobicity and metastability. Langmuir 20(9): 3517–3519

    Article  CAS  Google Scholar 

  104. Gao L, McCarthy TJ (2006) The “lotus effect” explained: two reasons why two length scales of topography are important. Langmuir 22(7):2966–2967

    Article  CAS  Google Scholar 

  105. Wolansky G, Marmur A (1999) Apparent contact angles on rough surfaces: the Wenzel equation revisited. Colloids Surf A Physicochem Eng Asp 156(1):381–388

    Article  CAS  Google Scholar 

  106. Shirtcliffe NJ, McHale G, Newton MI, Chabrol G, Perry CC (2004) Dual scale roughness produces unusually water repellent surfaces. Adv Mater Process 16(21):1929–1932

    Article  CAS  Google Scholar 

  107. Erbil HY, Cansoy CE (2009) Range of applicability of the Wenzel and Cassie−Baxter equations for superhydrophobic surfaces. Langmuir 25(24):14135–14145

    Article  CAS  Google Scholar 

  108. Lyklema J (2005) Fundamentals of interface and colloid science: soft colloids, vol 5. Academic press, Cambridge, MA

    Google Scholar 

  109. Milner ST (1991) Polymer brushes. Science 251(4996):905–914

    Article  CAS  Google Scholar 

  110. Kobayashi M, Terayama Y, Yamaguchi H, Terada M, Murakami D, Ishihara K, Takahara A (2012) Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes. Langmuir 28(18):7212–7222

    Article  CAS  Google Scholar 

  111. Glinel K, Jonas AM, Jouenne T, Leprince J, Galas L, Huck WT (2008) Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide. Bioconjug Chem 20(1): 71–77

    Article  CAS  Google Scholar 

  112. Yang WJ, Cai T, Neoh KG, Kang ET, Dickinson GH, Teo SLM, Rittschof D (2011) Biomimetic anchors for antifouling and antibacterial polymer brushes on stainless steel. Langmuir 27(11):7065–7076

    Article  CAS  Google Scholar 

  113. Gao G, Lange D, Hilpert K, Kindrachuk J, Zou Y, Cheng JT, Brooks DE (2011) The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 32(16):3899–3909

    Article  CAS  Google Scholar 

  114. Ayres N (2010) Polymer brushes: applications in biomaterials and nanotechnology. Polym Chem 1(6):769–777

    Article  CAS  Google Scholar 

  115. Sato T, Morinaga T, Marukane S, Narutomi T, Igarashi T, Kawano Y, Ohno K, Fukuda T, Tsuji Y (2011) Novel solid-state polymer electrolyte of colloidal crystal decorated with ionic-liquid polymer brush. Adv Mater 23:4868–4872

    Article  CAS  Google Scholar 

  116. Sato T, Morinaga T, Marukane S, Narutomi T, Igarashi T, Kawano Y, Ohno K, Fukuda T, Tsuji Y (2011) Novel solid-state polymer electrolyte of colloidal Cyrstal decorated with ionic-liquid polymer brush – supporting information. Adv Mater 23:1–5

    Article  CAS  Google Scholar 

  117. Arafune H, Kamijo T, Morinaga T, Honma S, Sato T, Tsuji Y (2015) A robust lubrication system using an ionic liquid polymer brush. Adv Mater Interfaces 2:1–5

    Article  Google Scholar 

  118. Morinaga T, Honma S, Ishizuka T, Kamijo T, Sato T, Tsuji Y (2016) Synthesis of monodisperse silica particles grafted with concentrated ionic liquid-type polymer brushes by surface-initiated atom transfer radical polymerization for use as a solid state polymer electrolyte. Polymers 8:146–159

    Article  CAS  Google Scholar 

  119. Oizumi A, Kanematsu H, Sato T, Kamijo T, Honma A (2017) Some bacterial biofilms formation on a polymer brush produced on glass substrate. In: The 48th annual meeting of union of chemistry-related societies in Chubu Area, Japan, 12 Nov 2017, Gifu

    Google Scholar 

  120. Kanematsu H, Sato T, Kamijo T, Honma S, Oizumi A, Umeki S, Ogawa A, Hirai N, Kogo T, Kuroda D, Ikegai H, Mizunoe Y (2018) Biofilm formation behavior on polymer brush surfaces by E. coli and S. pidermidis. In: 2018 TMS annual meeting & exhibition. The Minerals, Metals & Materials Society, Phoenix

    Google Scholar 

  121. Kanematsu H, Oizumi A, Sato T, Kamijo T, Honma S, Barry DM, Hirai N, Ogawa A, Kogo T, Daisuke K, Tsunashima K (2018) Polymer brush made by Ionic Liquids and the inhibition effects for biofilm formation. In: The 233rd ECS meeting. The Electrochemical Society, Seattle

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Kanematsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kanematsu, H., Barry, D.M., Ikegai, H., Yoshitake, M., Mizunoe, Y. (2018). Nanofibers and Biofilm in Materials Science. In: Barhoum, A., Bechelany, M., Makhlouf, A. (eds) Handbook of Nanofibers. Springer, Cham. https://doi.org/10.1007/978-3-319-42789-8_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42789-8_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42789-8

  • Online ISBN: 978-3-319-42789-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics