Skip to main content

Plasma-Based Deposition and Processing Techniques for Optical Fiber Sensing

  • Chapter
  • First Online:
Fiber Optic Sensors

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 21))

Abstract

Plasma-based techniques are widely applied for well-controlled deposition, etching or surface functionalization of a number of materials. It is difficult to imagine fabrication of novel microelectronic and optoelectronic devices without using plasma-enhanced deposition of thin films, their selective etching or functionalization of their surfaces for subsequent selective binding of chemical or biological molecules. Depending on the process parameters, i.e., generator frequency and power, composition of gases , pressure, temperature, and applied substrates, different effects of the process can be obtained. The chapter discusses current trends in application of plasma-based techniques for fabrication of novel optical sensing devices. Fabrication of materials with different structure (from amorphous to crystalline, porous, and multilayers), optical properties (absorption, refractive index ), and surface activity, as well as their processing are reviewed. Application of the plasma methods enhancing sensing properties of various optical fiber sensing structures, namely long-period gratings, intermodal interferometers based on photonic crystal fiber, sensing structures based on lossy mode resonance or stacks of nano-films are given as examples and are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Śmietana, W.J. Bock, J. Szmidt, G.R. Pickrell, Nanocoating Enhanced Optical Fiber Sensors. Advances in Materials Science for Environmental and Nuclear Technology, vol. 22 (Wiley, Hoboken, NJ, USA, 2010)

    Google Scholar 

  2. R.Y. Shah, Y.K. Agrawal, Introduction to fiber optics: sensors for biomedical applications. Indian J. Pharm. Sci. 73, 17 (2011)

    Article  Google Scholar 

  3. W. Mantele, Reaction induced infra-red spectroscopy for the study of protein function and reaction mechanisms. TIBS 18, 197 (1988)

    Google Scholar 

  4. R. Rajan, S. Chand, B.D. Gupta, Surface plasmon resonance based fiber optic sensor for the detection of pesticide. Sens. Actuators B 123, 661 (2007)

    Article  Google Scholar 

  5. K.R. Bier, A.F. Frieder, Scheller Fibre-optic genosensor for specific determination of femtomolar DNA oligomers. Anal. Chim. Acta 350, 51 (1997)

    Article  Google Scholar 

  6. K. Seshan, Handbook of thin film deposition techniques, processes, and technologies (Elsevier, Amsterdam, 2012)

    Google Scholar 

  7. P.M. Martin, Handbook of Deposition Technologies for Films and Coatings Science, Applications and Technology (William Andrew, Elsevier Science, Norwich, N.Y., Oxford, 2009)

    Google Scholar 

  8. K. Wasa, S. Hayakawa, Handbook of Sputter Deposition Technology: Principles, Technology, and Applications (Noyes Publications, Park Ridge, N.J., U.S.A, 1992)

    Google Scholar 

  9. M.-J. Lee, S.I. Kim, C.B. Lee, H. Yin, S.-E. Ahn, B.S. Kang, K.H. Kim, J.C. Park, C.J. Kim, I. Song, S.W. Kim, G. Stefanovich, J.H. Lee, S.J. Chung, Y.H. Kim, Y. Park, Low-temperature-grown transition metal oxide based storage materials and oxide transistors for high-density non-volatile memory. Adv. Funct. Mater. 19, 1587 (2009)

    Article  Google Scholar 

  10. K. Macák, V. Kouznetsov, J. Schneider, U. Helmersson, I. Petrov, Ionized sputter deposition using an extremely high plasma density pulsed magnetron discharge. J. Vac. Sci. Technol. A 18, 1533 (2000)

    Article  Google Scholar 

  11. J.T. Gudmundsson, J. Alami, U. Helmersson, Evolution of the electron energy distribution and plasma parameters in a pulsed magnetron discharge. Appl. Phys. Lett. 78, 3427 (2001)

    Article  Google Scholar 

  12. V. Stranak, M. Quaas, R. Bogdanowicz, H. Steffen, H. Wulff, Z. Hubicka, M. Tichy, R. Hippler, Effect of nitrogen doping on TiOxNy thin film formation at reactive high-power pulsed magnetron sputtering. J. Phys. D Appl. Phys. 43, 285203 (2010)

    Article  Google Scholar 

  13. V. Straňák, M. Čada, M. Quaas, S. Block, R. Bogdanowicz, Š. Kment, H. Wulff, Z. Hubička, C.A. Helm, M. Tichý, R. Hippler, Physical properties of homogeneous TiO2 films prepared by high power impulse magnetron sputtering as a function of crystallographic phase and nanostructure. J. Phys. D Appl. Phys. 42, 105204 (2009)

    Article  Google Scholar 

  14. M. Jiang, A.P. Zhang, Y.-C. Wang, H.-Y. Tam, S. He, Fabrication of a compact reflective long-period grating sensor with a cladding-mode-selective fiber end-face mirror. Opt. Express 17, 17976 (2009)

    Google Scholar 

  15. P. Hlubina, M. Kadulova, D. Ciprian, J. Sobota, Reflection-based fibre-optic refractive index sensor using surface plasmon resonance. J. Eur. Opt. Soc. Rap. Public. 9, 14033 (2014)

    Article  Google Scholar 

  16. R. Bogdanowicz, M. Śmietana, M. Gnyba, M. Ficek, V. Straňák, Ł. Goluński, M. Sobaszek, J. Ryl, Nucleation and growth of CVD diamond on fused silica optical fibres with titanium dioxide interlayer. Phys. Status Solidi A 210, 1991–1997 (2013)

    Article  Google Scholar 

  17. W. Choi, J.Y. Ko, H. Park, J.S. Chung, Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone. Appl. Catal. B 31, 209 (2001)

    Article  Google Scholar 

  18. J. Hamagami, Y. Oh, Y. Watanabe, M. Takata, Preparation and characterization of an optically detectable H2 gas sensor consisting of Pd/MoO3 thin films. Sens. Actuators B Chem. 13, 281–283 (1993)

    Article  Google Scholar 

  19. S. Sumida, S. Okazaki, S. Asakura, H. Nakagawa, H. Murayama, T. Hasegawa, Distributed hydrogen determination with fiber-optic sensor. Sens. Actuators B: Chem. 108, 508 (2005)

    Google Scholar 

  20. J. Villatoro, D. Luna-Moreno, D. Monzón-Hernández, Optical fiber hydrogen sensor for concentrations below the lower explosive limit. Sens. Actuators B: Chem. 110, 23–27 (2015)

    Article  Google Scholar 

  21. E. Maciak, Z. Opilski, Transition metal oxides covered Pd film for optical H2 gas detection. Thin Solid Films 515, 8351 (2007)

    Article  Google Scholar 

  22. V. Stranak, A.-P. Herrendorf, S. Drache, M. Cada, Z. Hubicka, R. Bogdanowicz, M. Tichy, R. Hippler, Plasma diagnostics of low pressure high power impulse magnetron sputtering assisted by electron cyclotron wave resonance plasma. J. Appl. Phys. 112, 093305 (2012)

    Article  Google Scholar 

  23. J.R. Roth, Industrial plasma engineering, vol. 2. (u.a.: Institute of Physics Publications, Bristol, 2001)

    Google Scholar 

  24. R. Bogdanowicz, L. Golunski, M. Sobaszek, Spatial characterization of H2:CH4 dissociation level in microwave ECR plasma source by fibre-optic OES. Eur. Phys. J. Spec. Topics 222, 2223 (2013)

    Article  Google Scholar 

  25. J.L. Zhang, S.J. Yu, T.C. Ma, Optical emission kinetics of argon inductively coupled plasma and argon dielectric barrier discharge. Vacuum 65(3–4), 327–333 (2002)

    Article  Google Scholar 

  26. P. Bulkin, N. Bertrand, B. Drevillon, Deposition of SiO2 in integrated distributed electron cyclotron resonance microwave reactor. Thin Solid Films 296(1–2), 66–68 (1997)

    Article  Google Scholar 

  27. R. Bogdanowicz, M. Gnyba, P. Wroczyński, Optoelectronic monitoring of plasma discharge optimized for thin diamond film synthesis. Journal de Physique IV (Proceedings) 137, 57–60 (2006)

    Article  Google Scholar 

  28. Z. Fang, Fundamentals of Optical Fiber Sensors (Wiley, Hoboken, 2012)

    Book  Google Scholar 

  29. H. Sunami, Y. Itoh, K. Sato, Stress and thermal-expansion coefficient of chemical-vapor deposited glass films. J. Appl. Phys. 41(13), 5115–5117 (2003)

    Article  Google Scholar 

  30. A. Martı́n, J.P. Espinós, A. Justo, J.P. Holgado, F. Yubero, A.R. González-Elipe, Preparation of transparent and conductive Al-doped ZnO thin films by ECR plasma enhanced CVD. Surf. Coat. Technol. 289, 151–152 (2002)

    Google Scholar 

  31. Q.Y. Zhang, K. Pita, S.C. Tjin, C.H. Kam, L.P. Zuo, S. Takahashi, Laser-induced ultraviolet absorption and refractive index changes in Ge–B–SiO2 planar waveguides by inductively coupled plasma-enhanced chemical vapor deposition. Chem. Phys. Lett. 379, 534 (2003)

    Article  Google Scholar 

  32. F. Iacopi, P.M. Vereecken, M. Schaekers, M. Caymax, N. Moelans, B. Blanpain, O. Richard, C. Detavernier, H. Griffiths, Plasma-enhanced chemical vapour deposition growth of Si nanowires with low melting point metal catalysts: an effective alternative to Au-mediated growth. Nanotechnology 18, 505307 (2007)

    Article  Google Scholar 

  33. L. Cheng, A.J. Steckl, J. Scofield, SiC thin-film Fabry-Perot interferometer for fiber-optic temperature sensor. IEEE Trans. Electron Devices 50, 2159 (2003)

    Article  Google Scholar 

  34. R.W. Johnson, A. Hultqvist, S.F. Bent, A brief review of atomic layer deposition. Mater. Today 17, 236 (2014)

    Article  Google Scholar 

  35. M. Smietana, M. Koba, E. Brzozowska, K. Krogulski, J. Nakonieczny, L. Wachnicki, P. Mikulic, M. Godlewski, W.J. Bock, Label-free sensitivity of long-period gratings enhanced by atomic layer deposited TiO2 nano-overlays. Opt. Express 23, 8441 (2015)

    Article  Google Scholar 

  36. M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd edn. (Wiley-Interscience, 1994)

    Google Scholar 

  37. M. Śmietana, M. Koba, P. Mikulic, W.J. Bock, Tuning properties of long-period gratings by plasma post-processing of their diamond-like carbon nano-overlays. Meas. Sci. Technol. 25, 114001 (2014)

    Article  Google Scholar 

  38. M. Śmietana, M. Koba, P. Mikulic, W.J. Bock, Measurements of reactive ion etching process effect using long-period fiber gratings. Opt. Express 22, 5986–5994 (2014)

    Article  Google Scholar 

  39. P.K. Chu, J.Y. Chen, L.P. Wang, N. Huang, Plasma-surface modification of biomaterials. Mater. Sci. Eng. R 36, 143 (2002)

    Article  Google Scholar 

  40. P. Pobedinskas, G. Degutis, W. Dexters, W. Janssen, S.D. Janssens, B. Conings, B. Ruttens, J. D’Haen, H.-G. Boyen, A. Hardy, M.K. Van Bael, K. Haenen, Surface plasma pretreatment for enhanced diamond nucleation on AlN. Appl. Phys. Lett. 102, 201609 (2013)

    Google Scholar 

  41. T.E.F.M. Standaert, C. Hedlund, E.A. Joseph, G.S. Oehrlein, T.J. Dalton, Role of fluorocarbon film formation in the etching of silicon, silicon dioxide, silicon nitride and amorphous hydrogenated silicon carbide. J. Vac. Sci. Technol. A 22(1), 53 (2004)

    Article  Google Scholar 

  42. B. Finke, F. Hempel, H. Testrich, A. Artemenko, H. Rebl, O. Kylián, J. Meichsner, H. Biederman, B. Nebe, K.-D. Weltmann, K. Schröder, Plasma processes for cell-adhesive titanium surfaces based on nitrogen-containing coatings. Surf. Coat. Technol. 205, S520 (2011)

    Article  Google Scholar 

  43. S. Grassini, E. Angelini, M. Parvis, F. Faraldi, Surface modification plasma treatments of PMMA optical fibres for sensing applications. Surf. Interf. Anal. 2012, 44 (1068)

    Google Scholar 

  44. B. Finke, F. Lüthen, K. Schröder, P.D. Müller, C. Bergemann, M. Frant, A. Ohl, B.J. Nebe, The effect of positively charged plasma porymerization on initial osteoblastic focal adhesion on titanium surface. Biomaterials 28, 4521 (2007)

    Article  Google Scholar 

  45. R. Bogdanowicz, M. Sawczak, P. Niedzialkowski, P. Zieba, B. Finke, J. Ryl, J. Karczewski, T. Ossowski, Novel functionalization of boron-doped diamond by microwave pulsed-plasma polymerized allylamine film. J. Phys. Chem. C 118, 8014 (2014)

    Article  Google Scholar 

  46. S. Avvakumova, M. Colombo, P. Tortora, D. Prosperi, Biotechnological approaches toward nanoparticle biofunctionalization. Trends Biotechnol. 32, 11 (2014)

    Article  Google Scholar 

  47. M. Śmietana, M. Dudek, M. Koba, B. Michalak, Influence of diamond-like carbon overlay properties on refractive index sensitivity of nano-coated optical fibers. Phys. Status Solidi A 210, 2100–2105 (2013)

    Article  Google Scholar 

  48. M. Smietana, J. Szmidt, M.L. Korwin-Pawlowski, W.J. Bock, J. Grabarczyk, Application of diamond-like carbon films in optical fibre sensors based on long-period gratings. Diam. Relat. Mater. 16, 1374 (2007)

    Article  Google Scholar 

  49. W.J. Bock, T. Eftimov, M. Smietana, P. Mikulic, Efficient distributed moisture-ingress sensing using diamond-like carbon-nanocoated long-period gratings. Optics Commun. 284, 4470 (2011)

    Article  Google Scholar 

  50. M. Wang, Y. Zhao, R.Z. Xu, M. Zhang, R.K.Y. Fu, P.K. Chu, Plasma modification of DLC films and the resulting surface biocompatibility. Mater. Sci. Forum 783–786, 1396 (2014)

    Article  Google Scholar 

  51. A. Vesel, M. Mozetic, Surface modification and ageing of PMMA polymer by oxygen plasma treatment. Vacuum 86, 634 (2012)

    Article  Google Scholar 

  52. Y. Jin, K.H. Wong, A.M. Granville, Developing localized surface plasmon resonance biosensor chips and fiber optics via direct surface modification of PMMA optical waveguides. Colloids Surf. A 492, 100 (2016)

    Article  Google Scholar 

  53. L. Le, Y. Xinghua, Y. Libo, Z. Enming, T. Fengjun, L. Shenzi, L. Yanxin, Electrospinning of Poly(Methyl Methacrylate) (PMMA) for optical waveguide. Sens. Lett. 10, 1544 (2012)

    Article  Google Scholar 

  54. A. Snyder, Coupled-mode theory for optical fibers. J. Opt. Soc. Am. 62, 1267 (1972)

    Article  Google Scholar 

  55. L. Jin, W. Jin, J. Ju, Y. Wang, Coupled local-mode theory for strongly modulated long period gratings. J. Lightwave Technol. 28, 1745 (2010)

    Article  Google Scholar 

  56. M.D. Feit, J.A. Fleck, Light propagation in graded-index optical fibers. Appl. Opt. 17, 3990 (1978)

    Article  Google Scholar 

  57. R. Scarmozzino, R.M. Osgood, Comparison of finite-difference and fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications. J. Opt. Soc. Am. A 8, 724 (1991)

    Article  Google Scholar 

  58. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, 2nd edn. (Wiley, 2007), chap. 7

    Google Scholar 

  59. H.A. Macleod, Thin-Film Optical Filters (Institute of Physics Publishing, Bristol and Philadelphia, 2001)

    Book  Google Scholar 

  60. Y.-J. He, Long-period fiber grating using the finite element method and eigenmode expansion method. Sens. Actuators B: Chem. 183, 319 (2013)

    Article  Google Scholar 

  61. G. Demésy, F. Zolla, A. Nicolet, M. Commandré, C. Fossati, The finite element method as applied to the diffraction by an anisotropic grating. Opt. Express 15, 18089 (2007)

    Article  Google Scholar 

  62. P. Yeh, OpticalWaves in Layered Media (Wiley, New York (NY), 1988)

    Google Scholar 

  63. M. Śmietana, M. Koba, R. Różycki-Bakon, Stack of PECVD silicon nitride nano-films on optical fiber end-face for refractive index sensing, in 23rd International Conference on Optical Fibre Sensors (2014), pp. 9157, 91575F

    Google Scholar 

  64. M. Koba, R. Rózycki-Bakon, P. Firek, M. Śmietana, Sensing properties of periodic stack of nano-films deposited with various vapor-based techniques on optical fiber end-face. Proc. SPIE Int. Soc. Opt. Eng. 9655, 96550R (2015)

    Google Scholar 

  65. M. Yang, Y. Sun, X. Li, D. Jiang, Optical fiber sensors based on Fabry-Perot multilayer coatings. Chin. Opt. Lett. 8, 189 (2010)

    Article  Google Scholar 

  66. F. Yang, J.R. Sambles, Determination of the optical permittivity and thickness of absorbing films using long range modes. J. Mod. Opt. 44, 1153 (1997)

    Article  Google Scholar 

  67. D. Sarid, Long-range surface-plasma waves on very thin metal films. Phys. Rev. Lett. 1981, 47 (1927)

    Google Scholar 

  68. J.C. Quail, H.J. Simon, Second-harmonic generation with phase-matched long-range and short-range surface plasmons 56, 2589 (1984)

    Google Scholar 

  69. J. Lagois, B. Fischer, Experimental observation of surface exciton polaritons. Phys. Rev. Lett. 36, 680 (1976)

    Article  Google Scholar 

  70. J. Lagois, B. Fischer, Introduction to surface exciton polaritons. Adv. Solid State Phys. 18, 197 (1978)

    Article  Google Scholar 

  71. I. Del Villar, M. Hernaez, C.R. Zamarreño, P. Sánchez, C. Fernández-Valdivielso, F.J. Arregui, I.R. Matias, Design rules for lossy mode resonance based sensors. Appl. Opt. 51, 4298 (2012)

    Article  Google Scholar 

  72. I. Del Villar, C.R. Zamarreno, M. Hernaez, F.J. Arregui, I.R. Matias, Lossy mode resonance generation with indium-tin-oxide-coated optical fibers for sensing applications. J. Lightwave Technol. 28, 111 (2012)

    Article  Google Scholar 

  73. B. Michalak, M. Koba, M. Śmietana, Silicon nitride overlays deposited on optical fibers with RF PECVD method for sensing applications: overlay uniformity aspects. Acta Phys. Pol. A 127, 1587 (2015)

    Article  Google Scholar 

  74. A.M. Vengsarkar, P.J. Lemaire, J.B. Judkins, V. Bhatia, T. Erdogan, J.E. Sipe, Long-period fiber gratings as band-rejection filters. J. Lightwave Technol. 14, 58 (1996)

    Article  Google Scholar 

  75. X. Shu, L. Zhang, I. Bennion, Sensitivity characteristics of long-period fiber gratings. J. Lightwave Technol. 20, 255 (2002)

    Article  Google Scholar 

  76. X. Shu, D. Huang, Highly sensitive chemical sensor based on the measurement of the separation of dual resonant peaks in a 100-mm-period fiber grating. Opt. Commun. 171, 65 (1999)

    Article  Google Scholar 

  77. L. Glavind, S. Buggy, J. Canning, S. Gao, K. Cook, Y. Luo, G.D. Peng, B.F. Skipper, M. Kristensen, Long-period gratings for selective monitoring of loads on a wind turbine blade. Appl. Opt. 53, 3993 (2014)

    Article  Google Scholar 

  78. X. Chen, L. Zhang, K. Zhou, E. Davies, K. Sugden, I. Bennion, M. Hughes, A. Hine, Real-time detection of DNA interactions with long period fiber-grating-based biosensor. Opt. Lett. 17, 2541 (2007)

    Article  Google Scholar 

  79. P. Pilla, P.F. Manzillo, V. Malachovska, A. Buosciolo, S. Campopiano, A. Cutolo, L. Ambrosio, M. Giordano, A. Cusano, Long period grating working in transition mode as promising technological platform for label free biosensing. Opt. Express 17, 20039 (2009)

    Google Scholar 

  80. L. Marques, F.U. Hernandez, S.W. James, S.P. Morgan, M. Clark, R.P. Tatam, S. Korposh, Highly sensitive optical fibre long period grating biosensor anchored with silica core gold shell nanoparticles. Biosens. Bioelectron. 75, 222 (2016)

    Article  Google Scholar 

  81. A.K. Dębowska, M. Śmietana, P. Mikulic, W.J. Bock, High temperature nano-coated electric-arc-induced long-period gratings working at the dispersion turning point for refractive index sensing. Jpn. J. Appl. Phys. 53, 08ME01 (2014)

    Google Scholar 

  82. M. Śmietana, W.J. Bock, P. Mikulic, C. Jiahua, Tuned pressure sensitivity of dual resonant long-period gratings written in boron codoped optical fiber. J. Lightwave Technol. 2012, 30 (1080)

    Google Scholar 

  83. M. Szymańska, K. Krogulski, P. Mikulic, W.J. Bock, M. Śmietana, Sensitivity of long-period gratings modified by their bending. Procedia Eng. 87, 1180 (2014)

    Article  Google Scholar 

  84. Z. Wang, Z. Heflin, R. Stolen, S. Ramachandran, Analysis of optical response of long period fiber gratings to nm-thick thin-film coating. Opt. Express 13, 2808 (2005)

    Article  Google Scholar 

  85. I.M. Ishaq, A. Quintela, S.W. James, G.J. Ashwell, J.M. Lopez-Higuera, R.P. Tatam, Modification of the refractive index response of long period grating using thin film overlays. Sens. Actuators B Chem. 107, 738 (2005)

    Article  Google Scholar 

  86. Z. Gu, Y. Xu, Design optimization of a long-period fiber grating with sol–gel coating for a gas sensor. Meas. Sci. Technol. 18, 3530 (2007)

    Article  Google Scholar 

  87. M. Smietana, W.J. Bock, P. Mikulic, J. Chen, Pressure sensing in high-refractive-index liquids using long-period gratings nanocoated with silicon nitride. Sensors 10, 11301 (2010)

    Article  Google Scholar 

  88. J. Grochowski, M. Myśliwiec, P. Mikulic, W.J. Bock, M. Śmietana, Temperature cross-sensitivity for highly refractive index sensitive nanocoated long-period gratings. Acta Phys. Pol. A 124, 421 (2013)

    Article  Google Scholar 

  89. L. Melo, G. Burton, P. Kubik, P. Wild, Long period gratings coated with hafnium oxide by plasma-enhanced atomic layer deposition for refractive index measurements. Opt. Express 24, 7654 (2016)

    Article  Google Scholar 

  90. F. Zou, Y. Liu, C. Deng, Y. Dong, S. Zhu, T. Wang, Refractive index sensitivity of nano-film coated long period fiber gratings. Opt. Express 23, 1114 (2015)

    Article  Google Scholar 

  91. M. Śmietana, M. Myśliwiec, P. Mikulic, B.S. Witkowski, W.J. Bock, Capability for fine tuning of the refractive index sensing properties of long-period gratings by atomic layer deposited Al2O3 overlays. Sensors 13, 16372 (2013)

    Article  Google Scholar 

  92. H.Y. Choi, M.J. Kim, B.H. Lee, All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber. Opt. Experss 15, 5711 (2007)

    Article  Google Scholar 

  93. W.J. Bock, T.A. Eftimov, P. Mikulic, J. Chen, An inline core-cladding intermodal interferometer using a photonic crystal fiber. J. Lightwave Technol. 27, 3933 (2009)

    Article  Google Scholar 

  94. R. Jha, J. Villatoro, G. Badenes, V. Pruneri, Refractometry based on a photonic crystal fiber interferometer. Opt. Lett. 34, 617 (2009)

    Article  Google Scholar 

  95. J. Villatoro, V. Finazzi, G. Badenes, V. Pruneri, Highly sensitive sensors based on photonic crystal fiber modal interferometers. J. Sens. 2009, 747803 (2009)

    Article  Google Scholar 

  96. Y. Geng, X. Li, X. Tan, Y. Deng, Y. Yu, A cascaded photonic crystal fiber Mach Zehnder interferometer formed by extra electric arc discharges. Appl. Phys. B 102, 595 (2010)

    Article  Google Scholar 

  97. M. Smietana, D. Brabant, W.J. Bock, P. Mikulic, T. Eftimov, Refractive index sensing with inline core-cladding intermodal interferometer based on silicon nitride nano-coated photonic crystal fiber. J. Lightwave Technol. 30, 1185 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Śmietana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dominik, M., Koba, M., Bogdanowicz, R., Bock, W.J., Śmietana, M. (2017). Plasma-Based Deposition and Processing Techniques for Optical Fiber Sensing. In: Matias, I., Ikezawa, S., Corres, J. (eds) Fiber Optic Sensors. Smart Sensors, Measurement and Instrumentation, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-42625-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42625-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42624-2

  • Online ISBN: 978-3-319-42625-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics