Skip to main content

The Mixed Alkali Effect Examined by Molecular Dynamics Simulations

  • Chapter
  • First Online:

Part of the book series: Topics in Applied Physics ((TAP,volume 132))

Abstract

When more than one kind of mobile ions are mixed in ionic conducting glasses, crystals and melts, there is non-linear decrease of conductivity or diffusivity, which can be as large as several orders of magnitude compared with the transport coefficient of either kind of ions. What is a cause of such a large effect? The phenomenon is known as mixed mobile ion effect or Mixed Alkali Effect (MAE) [1–4]. MAE is also known as common properties for ionic conductors including fast ion conductors such as β”-aluminum systems [5] and is considered as a key feature of the common physics governing the dynamics. Molecular dynamics simulation is useful to study the complex ion dynamics giving rise to the MAE in ionically conducting glasses. Many researchers tackled this problem for a long time and it was called as “permanent challenge” [6] during nearly over one century. The problem is still unsolved in the sense that “ a common view among researchers has not established yet”, although many features have become clearer in recent years. The experimental aspects of MAE are covered in details in Sect. 4.8. The difficulty of the problem is to solve all the following properties and features consistently.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.O. Isard, J. Non-Cryst. Solids 1, 235 (1969)

    Article  CAS  Google Scholar 

  2. D.E. Day, J. Non-Cryst. Solids 21, 343 (1976)

    Article  CAS  Google Scholar 

  3. M.D. Ingram, Phys. Chem. Glasses 28, 215 (1987)

    CAS  Google Scholar 

  4. M.D. Ingram, Ber. Glass Sci. Technol. 67, 15 (1994)

    Google Scholar 

  5. G.V. Chandrashekhar, L.M. Foster, Solid State Commun. 27, 269 (1978)

    Article  CAS  Google Scholar 

  6. G. Tomandl, H.A. Schaeffer, J. Non-Cryst. Solids 73, 179 (1985)

    Article  CAS  Google Scholar 

  7. C.T. Moynihan, N.S. Saad, D.C. Tran, A.V. Lesikar, J. Am. Ceram. Soc. 63, 458 (1980)

    Article  CAS  Google Scholar 

  8. K.L. Ngai, Y. Wang, C.T. Moynihan, J. Non-Cryst. Solids 307–310, 999 (2002)

    Article  Google Scholar 

  9. P. Maass, R. Peibst, J. Non-Cryst. Solids 352, 42 (2006)

    Article  Google Scholar 

  10. R. Peibst, S. Schott, P. Maass, Phys. Rev. Lett. 95, 115901 (2005)

    Article  Google Scholar 

  11. H. Jain, X. Lu, J. Non-Cryst. Solids 196, 285 (1996)

    Article  CAS  Google Scholar 

  12. H. Jain, N.L. Peterson, H.L. Downing, J. Non-Cryst. Solids 55, 283 (1983)

    Article  CAS  Google Scholar 

  13. R. Terai, H. Wakabayashi, H. Hamanaka, J. Non-Cryst. Solids 103, 137 (1988)

    Article  CAS  Google Scholar 

  14. B. Vessal, G.N. Greaves, P.T. Marten, A.V. Chadwick, R. Mole, S. Houde-Walter, Nature 356, 504 (1992)

    Article  CAS  Google Scholar 

  15. S. Balasubramanian, K.J. Rao, J. Phys. Chem. 97, 8835 (1993)

    Article  CAS  Google Scholar 

  16. S. Balasubramanian, K.J. Rao, J. Non-Cryst. Solids 181, 157 (1995)

    Article  CAS  Google Scholar 

  17. J. Habasaki, I. Okada, Y. Hiwatari, J. Non-Cryst. Solids 183, 12 (1995)

    Article  CAS  Google Scholar 

  18. J. Habasaki, I. Okada, Y. Hiwatari, J. Non-Cryst. Solids 208, 181 (1996)

    Article  CAS  Google Scholar 

  19. J. Horbach, W. Kob, K. Binder, C.A. Angell, Phys. Rev. E54, R5897 (1996)

    Google Scholar 

  20. H. Lammert, A. Heuer, Phys. Rev. B72, 214202 (2005)

    Article  Google Scholar 

  21. J. Habasaki, K.L. Ngai, Phys. Chem. Chem. Phys. 9, 4673 (2007)

    Article  CAS  Google Scholar 

  22. T.L. Gilbert, J. Chem. Phys. 49, 2640 (1968)

    Article  CAS  Google Scholar 

  23. Y. Ida, Phys. Earth Planet Inter. 13, 97 (1976)

    Article  CAS  Google Scholar 

  24. J. Habasaki, I. Okada, Mol. Simul. 9, 319 (1992)

    Article  CAS  Google Scholar 

  25. L. Van Hove, Phys. Rev. 95, 249 (1954)

    Article  Google Scholar 

  26. A. Hall, J. Swenson, S. Adams, C. Meneghini, Phys. Rev. Lett. 101, 195901 (2008)

    Article  Google Scholar 

  27. R.D. Shannon, C.T. Prewitt, Acta Cryst B25, 925 (1969)

    Article  Google Scholar 

  28. R.D. Shannon, Acta Cryst A32, 751 (1976)

    Article  CAS  Google Scholar 

  29. J. Habasaki, K.L. Ngai, J. Chem. Phys. 122, 214725 (2005)

    Article  Google Scholar 

  30. J. Habasaki, AIP Conf. Proc. 1518, 170 (2013)

    Article  CAS  Google Scholar 

  31. J. Habasaki, Y. Hiwatari, Phys. Rev. B69, 144207 (2004)

    Article  Google Scholar 

  32. J. Habasaki, I. Okada, Y. Hiwatari, Mat. Res. Soc. Symp. Proc. 455, 91 (1996)

    Article  Google Scholar 

  33. S. Alexander, R. Orbach, J. Phys. Lett. 43, L625 (1982)

    Article  Google Scholar 

  34. J. Habasaki, K.L. Ngai, Y. Hiwatari, J. Chem. Phys. 120, 8195 (2004)

    Article  CAS  Google Scholar 

  35. D. ben-Avraham, S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  36. J. Habasaki, Y. Hiwatari, J. Non-Cryst. Solids 307–310, 930 (2002)

    Article  Google Scholar 

  37. J. Habasaki, Y. Hiwatari, Phys. Rev. E 59, 6962 (1999)

    Article  CAS  Google Scholar 

  38. J. Habasaki, I. Okada, Y. Hiwatari, Phys. Rev. B 55, 6309 (1997)

    Article  CAS  Google Scholar 

  39. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957)

    Article  Google Scholar 

  40. T. Odagaki, M. Lax, Phys. Rev. B24, 5284 (1981)

    Article  Google Scholar 

  41. J. Habasaki, K.L. Ngai, Y. Hiwatari, Phys. Rev. E65, 021604 (2002)

    Google Scholar 

  42. Y. Haven, B. Verkerk, Phys. Chem. Glasses 6, 38 (1965)

    CAS  Google Scholar 

  43. R. Terai, J. Non-Cryst. Solids 6, 121 (1971)

    Article  CAS  Google Scholar 

  44. B. Hafskjold, X. Li, J. Phys.: Condens. Matter 7, 2949 (1995)

    CAS  Google Scholar 

  45. J. Habasaki, K.L. Ngai, Y. Hiwatari, C.T. Moynihan, J. Non-Cryst. Solids 349, 223 (2004)

    Article  CAS  Google Scholar 

  46. A. Heuer, M. Kunow, M. Vogel, R.D. Banhatti, Phys. Chem. Chem. Phys. 4, 3185 (2002)

    Article  CAS  Google Scholar 

  47. S. Voss, S.V. Divinski, A.W. Imre, H. Mehrer, J.N. Mundy, Solid State Ionics 176, 1383 (2005)

    Article  CAS  Google Scholar 

  48. J. Habasaki, K.L. Ngai, Y. Hiwatari, J. Chem. Phys. 121, 925 (2004)

    Article  CAS  Google Scholar 

  49. J. Habasaki, Y. Hiwatari, Phys. Rev. E 62, 8790 (2000)

    Article  CAS  Google Scholar 

  50. P. Scheidler, W. Kob, K. Binder, Europhys. Lett. 52, 277 (2000)

    Article  CAS  Google Scholar 

  51. K.L. Ngai, Philos. Mag. B 82, 291 (2002)

    Article  CAS  Google Scholar 

  52. K.L. Ngai, Relaxation and Diffusion in Complex Systems (Springer, New York, 2011)

    Book  Google Scholar 

  53. M. Ozawa, W. Kob, A. Ikeda, K. Miyazaki, Proc. Natl. Acad. Sci. 112, 6914 (2015)

    Article  CAS  Google Scholar 

  54. J. Habasaki, Y. Hiwatari, Phys. Rev. E58, 5111 (1998)

    Google Scholar 

  55. W.G. LaCourse, J. Non-Cryst. Solids 95&96, 905 (1987)

    Article  Google Scholar 

  56. M.I. Ingram, B. Roling, J. Phys. Condens. Matter 15, S1595 (2003)

    Article  CAS  Google Scholar 

  57. J.E. Shelby Jr., D.E. Day, J. Am. Ceram. Soc. 52, 169 (1969)

    Article  CAS  Google Scholar 

  58. J. Habasaki, I. Okada, Y. Hiwatari, in Transport and Dynamical Correlations in Glassy States and the Liquid-Glass Transition of Li 2 SiO 3 , ed. by F. Yonezawa. Molecular Dynamics Simulations, Springer Series in Solid State Science, vol. 103 (Springer, Berlin, 1992), pp. 98–108

    Google Scholar 

  59. E. Sunyer, P. Jund, R. Jullien, J. Phys.: Condens. Matter 15, L431 (2003)

    CAS  Google Scholar 

  60. F.H. Stillinger, T.A. Weber, Phys. Rev. A25, 978 (1982)

    Article  Google Scholar 

  61. J. Swenson, S. Adams, Phys. Rev. Lett. 90, 155507 (2003)

    Article  Google Scholar 

  62. S. Adams, J. Swenson, Phys. Rev. Lett. 84, 4144 (2000)

    Article  CAS  Google Scholar 

  63. S. Adams, J. Swenson, Phys. Chem. Chem. Phys. 4, 3179 (2002)

    Article  CAS  Google Scholar 

  64. C.R. Mueller, V. Kathrirachchi, M. Schuch, P. Maass, G. Petkov, Phys. Chem. Chem. Phys. 12, 10444 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Habasaki, J., León, C., Ngai, K.L. (2017). The Mixed Alkali Effect Examined by Molecular Dynamics Simulations. In: Dynamics of Glassy, Crystalline and Liquid Ionic Conductors. Topics in Applied Physics, vol 132. Springer, Cham. https://doi.org/10.1007/978-3-319-42391-3_10

Download citation

Publish with us

Policies and ethics