Skip to main content

Glutamate Receptor-Like Ion Channels in Arabidopsis thaliana

  • Chapter
  • First Online:
Book cover Stress Signaling in Plants: Genomics and Proteomics Perspective, Volume 2
  • 1343 Accesses

Abstract

Ionotropic glutamate receptors (iGluRs) are glutamate-gated nonselective cation channels (NSCC) that mediate rapid conduction of impulses through the synapses in central nervous system of animals. At one time, signaling through the iGluRs was thought to be limited to the animal system but with the discovery of 20 glutamate receptor-like genes (GLRs) in Arabidopsis thaliana has paved the way for the study of glutamate receptors in an organism lacking nervous system. These 20 genes expressed in diverse tissue throughout the plant and designated as putative glutamate receptor. They were named as putative glutamate receptor on the basis of high similarity of their deduced amino acid sequences with members of the iGluR superfamily. Furthermore, these nonselective ion channels share the properties similar to those of animal iGluRs. The information based on sequence similarity predicts that A. thaliana glutamate receptors (AtGLRs) also exist as the integral membrane proteins like iGluRs. Through the application of specific antagonists or agonists, designated as inhibitors or stimulators respectively, the putative function of AtGLRs has been associated to an array of processes. Comprehensive information about glutamate receptors of A. thaliana is given in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asher P, Nowak L (1988) The role of divalent cations in the N-methyl-D-aspartate responses of mouse central neurons in culture. J Physiol Lond 399:247–296

    Article  Google Scholar 

  • Banke TG, Dravid SM, Traynelis SF (2005) Protons trap NR1/NR2B NMDA receptors in a non conducting state. J Neurosci 25:42–51

    Article  CAS  PubMed  Google Scholar 

  • Brenner ED, Martinez-Barboza N, Clark AP, Liang QS, Stevenson DW, Coruzzi GM (2000) Arabidopsis mutants resistant to S(+)-beta-methyl-alpha, beta di amino propionic acid, a cycad derived glutamate receptor agonist. Plant Physiol 124:1615–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen RH, Brady DM, Smith D, Murray AW, Hardwick KG (1999) The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins. Mol Biol Cell 10:2607–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu J, Desalle R, Lam HM, Meisel L, Coruzzi G (1999) Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged. Mol Biol Evol 16:826–838

    Article  CAS  PubMed  Google Scholar 

  • Chiu JC, Brenner ED, DeSalle R, Nitabach MN, Holmes TC, Coruzzi GM (2002) Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana. Mol Biol Evol 19(7):1066–1082

    Article  CAS  PubMed  Google Scholar 

  • Cho D, Kim SA, Murata Y, Lee S, Jae SK, Nam HG (2009) Deregulated expression of the plant glutamate receptor homolog AtGLR3.1 impairs long term Ca2+ programmed stomatal closure. Plant J 58:437–449

    Article  CAS  PubMed  Google Scholar 

  • Collingridge GL, Lester RA (1989) Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 41(2):143–210

    CAS  PubMed  Google Scholar 

  • Collingridge GL, Singer W (1990). Excitatory amino acid receptors and synaptic plasticity. Trends Pharmacol Sci 11:290–296

    Google Scholar 

  • Davenport R (2002) Glutamate receptors in plants. Ann Bot 90:549–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennison KL, Spalding EP (2000). Glutamate gated calcium fluxes in Arabidopsis. Plant Physiol 124:1511–1514

    Google Scholar 

  • Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51(1):7–61

    CAS  PubMed  Google Scholar 

  • Dubos C, Huggins D, Grant GH, Knight MR, Campbell MM (2003) A role for glycine in the gating of plant NMDA-like receptors. Plant J 35:800–810

    Article  CAS  PubMed  Google Scholar 

  • Erreger K, Chen PE, Wyllie DJA, Traynelis SF (2004) Glutamate receptor gating. Neurobiology 16(3):187–224

    CAS  Google Scholar 

  • Furukawa H, Singh SK, Mancusso R, Gouaux E (2005) Subunit arrangement and function in NMDA receptors. Nature 438:185–192

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez RA, Stokes TL, Thum K, Xu X, Obertello M, Katari MS (2008) Systems approach identifies an organic nitrogen responsive gene network that is regulated by the master clock control gene CCA1. Proc Natl Acad Sci U S A 105:4939–4944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaskolski F, Coussen F, Mulle C (2005) Subcellular localization and trafficking of kainate receptors. Trends Pharmacol Sci 26:20–26

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Mehta S, Turano FJ (2004) The putative glutamate receptor1.1 (AtGLR1.1) in Arabidopsis thaliana regulates abscisic acid biosynthesis and signaling to control development and waterloss. Plant Cell Physiol 45:1380–1389

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Kim HB, Lee H, Choi JY, Heu S, Oh CJ (2006) Over expression in Arabidopsis of a plasma membrane targeting glutamate receptor from small radish increases glutamate-mediated Ca2+ influx and delays fungal infection. Mol Cells 21:418–427

    CAS  PubMed  Google Scholar 

  • Keinanen K, Wisden W, Sommer B, Werner P, Herb A, Verdoorn TA, Sakmann B, Seeburg PH (1990) A family of AMPA-selective glutamate receptors. Science 249(4968):556–560

    Article  CAS  PubMed  Google Scholar 

  • Kennedy MB (1998) Signal transduction molecules at the glutamatergic postsynaptic membrane. Brain Res Rev 26:243–257

    Article  CAS  PubMed  Google Scholar 

  • Kim SA, Kwak JM, Jae SK, Wang MH, Nam HG (2001) Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants. Plant Cell Physiol 42:74–84

    Article  CAS  PubMed  Google Scholar 

  • Lacombe B, Becker D, Hedrich R, DeSalle R, Hollmann M, Kwak JM, Schroeder JI, Le Novere N, Nam HG, Tester M, Spalding EP, Turano FJ, Chiu J, Coruzzi GM (2001) On the identity of plant glutamate receptors. Science 292:1486–1487

    Article  CAS  PubMed  Google Scholar 

  • Lam HM, Chiu J, Hsieh MH, Meisel L, Oliveira IC, Shin M (1998) Glutamate receptor genes in plants. Nature 396:125–126

    Article  CAS  PubMed  Google Scholar 

  • Lerma J (2003) Roles and rules of kainate receptors in synaptic transmission. Nat Rev Neurosci 4:481–495

    Article  CAS  PubMed  Google Scholar 

  • Lomeli H, Sprengel R, Laurie DJ, Köhr G, Herb A, Seeburg PH, Wisden W (1993) The rat delta-1 and delta-2 subunits extend the excitatory amino acid receptor family. FEBS Lett 315(3):318–322

    Article  CAS  PubMed  Google Scholar 

  • Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309:261–263

    Article  CAS  PubMed  Google Scholar 

  • McBain CJ, Mayer ML (1994) N-Methyl-D-aspartic acid receptor structure and function. Physiol Rev 74:723–760

    CAS  PubMed  Google Scholar 

  • Meyerhoff O, Muller K, Roelfsema MR, Latz A, Lacombe B, Hedrich R, Dietrich P, Becker D (2005) AtGLR3.4 a glutamate receptor channel like gene is sensitive to touch and cold. Planta 222:418–427

    Article  CAS  PubMed  Google Scholar 

  • Michard E, Lima PT, Borges F, Silva AC, Portes MT, Carvalho JE et al (2011) Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science 332:434–437

    Article  CAS  PubMed  Google Scholar 

  • Monaghan DT, Bridges RJ, Cotman CW (1989) The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 29:365–402

    Article  CAS  PubMed  Google Scholar 

  • Monyer H, Seeburg PH, Wisden W (1991) Glutamate-operated channels: developmentally early and mature forms arise by alternative splicing. Neuron 6(5):799–810

    Article  CAS  PubMed  Google Scholar 

  • Mosbacher J, Schoepfer R, Monyer H, Burnashev N, Seeburg PH, Ruppersberg JP (1994) A molecular determinant for submillisecond desensitization in glutamate receptors. Science 266:1059–1062

    Article  CAS  PubMed  Google Scholar 

  • Nowak L, Bregestovski P, Ascher P, Herbert A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465

    Article  CAS  PubMed  Google Scholar 

  • O’Hara PJ, Sheppard PO, Thogersen H, Venezia D, Haldeman BA, McGrane V, Houamed KM, Thomsen C, Gilbert TL, Mulvihill ER (1993) The ligand binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding. Neuron 11:41–52

    Article  PubMed  Google Scholar 

  • Panchenko VA, Glasser CR, Mayer ML (2001) Structural similarities between glutamate receptor channels and K(+) channels examined by scanning mutagenesis. J Gen Physiol 117:345–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pohlsgaard J, Frydenvang K, Madsen U, Kastrup JS (2011) Lessons from more than 80 structures of the GluA2 ligand-binding domain in complex with agonists, antagonists and allostemric modulators. Neuropharmacology 60:135–150

    Article  CAS  PubMed  Google Scholar 

  • Qi Z, Stephens NR, Spalding EP (2006) Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile. Plant Physiol 142:963–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy SJ, Gilliham M, Berger B, Essah PA, Cheffings C, Miller AJ (2008) Investigating glutamate receptor like gene co expression in Arabidopsis thaliana. Plant Cell Environ 31:861–871

    Article  CAS  PubMed  Google Scholar 

  • Stephens NR, Qi Z, Spalding EP (2008) Glutamate receptor subtypes evidenced by differences in desensitization and dependence on the GLR3.3 and GLR3.4 genes. Plant Physiol 146:529–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tapken D, Hollmann M (2008) Arabidopsis thaliana glutamate receptor ion channel function demonstrated by ion pore transplantation. J Mol Biol 383:36–48

    Article  CAS  PubMed  Google Scholar 

  • Teardo E, Segalla A, Formentin E, Zanetti M, Marin O, Giacometti GM (2010) Characterization of a plant glutamate receptor activity. Cell Physiol Biochem 26:253–262

    Article  CAS  PubMed  Google Scholar 

  • Teardo E, Formentin E, Segalla A, Giacometti GM, Marin O, Zanetti M (2011). Dual localization of plant glutamate receptor AtGLR3.4 to plastids and plasma membrane. Biochim Biophys Acta 1807:359–367

    Google Scholar 

  • Vincill ED, Bieck AM, Spalding EP (2012) Ca2+ conduction by an amino acid gated ion channel related to glutamate receptors. Plant Physiol 159:40–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenthold RJ, Yokotani N, Doi K, Wada K (1992) Immunochemical characterization of the non-NMDA glutamate receptor using subunit specific antibodies. Evidence for a hetero-oligomeric structure in rat brain. J Biol Chem 267:501–507

    CAS  PubMed  Google Scholar 

  • Wolosker H (2006) D-serine regulation of NMDA receptor activity. Sci STKE 2006(356):pe41

    Article  PubMed  Google Scholar 

  • Xia H, Von Zastrow M, Malenka RC (2002) A novel anterograde trafficking signal present in the N-terminal extracellular domain of ionotropic glutamate receptors. J Biol Chem 277:47765–47769

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Altaf Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hemant, Ibrahim, M.M., Sarwat, M., Ahmad, A. (2017). Glutamate Receptor-Like Ion Channels in Arabidopsis thaliana . In: Sarwat, M., Ahmad, A., Abdin, M., Ibrahim, M. (eds) Stress Signaling in Plants: Genomics and Proteomics Perspective, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-42183-4_3

Download citation

Publish with us

Policies and ethics