Skip to main content

Efficient 4D Non-local Tensor Total-Variation for Low-Dose CT Perfusion Deconvolution

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9601))

Abstract

Tensor total variation deconvolution has been recently proposed as a robust framework to accurately estimate the hemodynamic parameters in low-dose CT perfusion by fusing the local anatomical structure correlation and the temporal blood flow continuation. However the locality property in the current framework constrains the search for anatomical structure similarities to the local neighborhood, missing the global and long-range correlations in the whole anatomical structure. This limitation has led to the noticeable absence or artifacts of delicate structures, including the critical indicators for the clinical diagnosis of cerebrovascular diseases. In this paper, we propose an extension of the TTV framework by introducing 4D non-local tensor total variation into the deconvolution to bridge the gap between non-adjacent regions of the same tissue classes. The non-local regularization using tensor total variation term is imposed on the spatio-temporal flow-scaled residue functions. An efficient algorithm and the implementation of the non-local tensor total variation (NL-TTV) reduce the time complexity with the fast similarity computation, the accelerated optimization and parallel operations. Extensive evaluations on the clinical data with cerebrovascular diseases and normal subjects demonstrate the importance of non-local linkage and long-range connections for the low-dose CT perfusion deconvolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Saito, N., Kudo, K., Sasaki, T., Uesugi, M., Koshino, K., Miyamoto, M., Suzuki, S.: Realization of reliable cerebral-blood-flow maps from low-dose CT perfusion images by statistical noise reduction using nonlinear diffusion filtering. Radiol. Phys. Technol. 1(1), 62–74 (2008)

    Article  Google Scholar 

  2. Mendrik, A.M., Vonken, E., van Ginneken, B., de Jong, H.W., Riordan, A., van Seeters, T., Smit, E.J., Viergever, M.A., Prokop, M.: Tips bilateral noise reduction in 4d CT perfusion scans produceshigh-quality cerebral blood flow maps. Phys. Med. Biol. 56(13), 3857 (2011)

    Article  Google Scholar 

  3. Tian, Z., Jia, X., Yuan, K., Pan, T., Jiang, S.B.: Low-dose CT reconstruction via edge-preserving total variation regularization. Phys. Med. Biol. 56(18), 5949 (2011)

    Article  Google Scholar 

  4. Ma, J., Huang, J., Feng, Q., Zhang, H., Lu, H., Liang, Z., Chen, W.: Low-dose computed tomography image restoration using previous normal-dose scan. Med. Phys. 38, 5713 (2011)

    Article  Google Scholar 

  5. Supanich, M., Tao, Y., Nett, B., Pulfer, K., Hsieh, J., Turski, P., Mistretta, C., Rowley, H., Chen, G.H.: Radiation dose reduction in time-resolved CT angiography using highly constrained back projection reconstruction. Phys. Med. Biol. 54(14), 4575 (2009)

    Article  Google Scholar 

  6. He, L., Orten, B., Do, S., Karl, W.C., Kambadakone, A., Sahani, D.V., Pien, H.: A spatio-temporal deconvolution method to improve perfusion CT quantification. IEEE Trans. Med. Imaging 29(5), 1182–1191 (2010)

    Article  Google Scholar 

  7. Fang, R., Chen, T., Sanelli, P.C.: Towards robust deconvolution of low-dose perfusion CT: sparse perfusion deconvolution using online dictionary learning. Med. Image Anal. 17(4), 417–428 (2013)

    Article  Google Scholar 

  8. Fang, R., Karlsson, K., Chen, T., Sanelli, P.C.: Improving low-dose blood-brain barrier permeability quantification using sparse high-dose induced prior for patlak model. Med. Image Anal. 18(6), 866–880 (2014)

    Article  Google Scholar 

  9. Fang, R., Zhang, S., Chen, T., Sanelli, P.: Robust low-dose CT perfusion deconvolution via tensor total-variation regularization. IEEE Trans. Med. Imaging 34(7), 1533–1548 (2015)

    Article  Google Scholar 

  10. Yu, Y., Zhang, S., Li, K., Metaxas, D., Axel, L.: Deformable models with sparsity constraints for cardiac motion analysis. Med. Image Anal. 18(6), 927–937 (2014)

    Article  Google Scholar 

  11. Zhang, S., Zhan, Y., Dewan, M., Huang, J., Metaxas, D.N., Zhou, X.S.: Towards robust and effective shape modeling: sparse shape composition. Med. Image Anal. 16(1), 265–277 (2012)

    Article  Google Scholar 

  12. Fang, R., Sanelli, P.C., Zhang, S., Chen, T.: Tensor total-variation regularized deconvolution for efficient low-dose CT perfusion. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part I. LNCS, vol. 8673, pp. 154–161. Springer, Heidelberg (2014)

    Google Scholar 

  13. Sawatzky, A.: (Nonlocal) Total Variation in Medical Imaging, Ph.D. Thesis

    Google Scholar 

  14. Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3(3), 253–276 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mignotte, M.: A non-local regularization strategy for image deconvolution. Pattern Recogn. Lett. 29(16), 2206–2212 (2008)

    Article  Google Scholar 

  16. Elmoataz, A., Lezoray, O., Bougleux, S.: Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing. IEEE Trans. Image Process. 17(7), 1047–1060 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jia, X., Lou, Y., Dong, B., Tian, Z., Jiang, S.: 4D computed tomography reconstruction from few-projection data via temporal non-local regularization. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 143–150. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Huang, J., Yang, F.: Compressed magnetic resonance imaging based on wavelet sparsity and nonlocal total variation. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 968–971. IEEE (2012)

    Google Scholar 

  19. Britten, A., Crotty, M., Kiremidjian, H., Grundy, A., Adam, E.: The addition of computer simulated noise to investigate radiation dose and image quality in images with spatial correlation of statistical noise: an example application to X-ray CT of the brain. Br. J. Radiol. 77, 323–328 (2014)

    Article  Google Scholar 

  20. Juluru, K., Shih, J., Raj, A., Comunale, J., Delaney, H., Greenberg, E., Hermann, C., Liu, Y., Hoelscher, A., Al-Khori, N., et al.: Effects of increased image noise on image quality and quantitative interpretation in brain CT perfusion. Am. J. Neuroradiol. 34(8), 1506–1512 (2013)

    Article  Google Scholar 

  21. Frush, D.P., Slack, C.C., Hollingsworth, C.L., Bisset, G.S., Donnelly, L.F., Hsieh, J., Lavin-Wensell, T., Mayo, J.R.: Computer-simulated radiation dose reduction for abdominal multidetector CT of pediatric patients. Am. J. Roentgenol. 179(5), 1107–1113 (2002)

    Article  Google Scholar 

  22. Østergaard, L., Weisskoff, R.M., Chesler, D.A., Gyldensted, C., Rosen, B.R.: High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn. Reson. Med. 36(5), 715–725 (1996)

    Article  Google Scholar 

  23. Wittsack, H.J., Wohlschläger, A.M., Ritzl, E., Kleiser, R., Cohnen, M., Seitz, R., Mödder, U.: CT-perfusion imaging of the human brain: advanced deconvolution analysis using circulant singular value decomposition. Comput. Med. Imaging Graph. 32(1), 67–77 (2008)

    Article  Google Scholar 

  24. Fieselmann, A., Kowarschik, M., Ganguly, A., Hornegger, J., Fahrig, R.: Deconvolution-based CT and MR brain perfusion measurement: theoretical model revisited and practical implementation details. J. Biomed. Imaging 2011, 14 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruogu Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Fang, R., Ni, M., Huang, J., Li, Q., Li, T. (2016). Efficient 4D Non-local Tensor Total-Variation for Low-Dose CT Perfusion Deconvolution. In: Menze, B., et al. Medical Computer Vision: Algorithms for Big Data. MCV 2015. Lecture Notes in Computer Science(), vol 9601. Springer, Cham. https://doi.org/10.1007/978-3-319-42016-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42016-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42015-8

  • Online ISBN: 978-3-319-42016-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics