Skip to main content

Estimating Cartesian Compression via Deep Learning

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9782))

Included in the following conference series:

Abstract

We introduce a learning architecture that can serve compression while it also satisfies the constraints of factored reinforcement learning. Our novel Cartesian factors enable one to decrease the number of variables being relevant for the ongoing task, an exponential gain in the size of the state space. We demonstrate the working, the limitations and the promises of the abstractions: we develop a representation of space in allothetic coordinates from egocentric observations and argue that the lower dimensional allothetic representation can be used for path planning. Our results on the learning of Cartesian factors indicate that (a) shallow autoencoders perform well in our numerical example and (b) if deeper networks are needed, e.g., for classification or regression, then sparsity should also be enforced at (some of) the intermediate layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://prize.hutter1.net/.

  2. 2.

    https://github.com/kastnerkyle/SciPy2015.

  3. 3.

    https://unity3d.com.

References

  1. Becker, S.R., Candès, E.J., Grant, M.C.: Templates for convex cone problems with applications to sparse signal recovery. Math. Prog. Comp. 3(3), 165–218 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., Bengio, Y.: Theano. In: Python Sci. Comp. vol. 4, p. 3. Austin, TX (2010)

    Google Scholar 

  3. Boutilier, C., Dearden, R., Goldszmidt, M.: Stochastic dynamic programming with factored representations. Artif. Intel. 121(1), 49–107 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Culberson, J.C.: On the futility of blind search: an algorithmic view of no free lunch. Evol. Comp. 6(2), 109–127 (1998)

    Article  Google Scholar 

  5. Dahl, G.E., Sainath, T.N., Hinton, G.E.: Improving deep neural networks for LVCSR using rectified linear units and dropout. In: Acoustics, Speech and Signal Processing (ICASSP), pp. 8609–8613. IEEE (2013)

    Google Scholar 

  6. Dai, W., Milenkovic, O.: Subspace pursuit for compressive sensing signal reconstruction. Info. Theo. 55(5), 2230–2249 (2009)

    Article  MathSciNet  Google Scholar 

  7. Daswani, M., Sunehag, P., Hutter, M.: Feature reinforcement learning: state of the art. In: Sequential decision-making with big data: AAAI 2014. Assoc. Adv. Artif. Intel. (2014)

    Google Scholar 

  8. Dowe, D.L., Hernández-Orallo, J., Das, P.K.: Compression and intelligence: social environments and communication. In: Schmidhuber, J., Thórisson, K.R., Looks, M. (eds.) AGI 2011. LNCS, vol. 6830, pp. 204–211. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1., March 2014. http://cvxr.com/cvx

  12. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hochreiter, S.: Untersuchungen zu dynamischen neuronalen netzen. Master’s thesis, Institut für Informatik, Technische Universität, München (1991)

    Google Scholar 

  14. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent nets: the difficulty of learning long-term dependencies (2001)

    Google Scholar 

  15. Hutter, M.: Feature reinforcement learning: Part I. unstructured MDPs. J. Artif. Gen. Intel. 1, 3–24 (2009)

    Google Scholar 

  16. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis, vol. 46. Wiley, New York (2004)

    Google Scholar 

  17. Kearns, M., Koller, D.: Efficient reinforcement learning in factored MDPs. In: IJCAI, vol. 16, pp. 740–747 (1999)

    Google Scholar 

  18. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)

  19. Lőrincz, A., Szirtes, G.: Here and now: how time segments may become events in the hippocampus. Neural Netw. 22(5), 738–747 (2009)

    Article  Google Scholar 

  20. Makhzani, A., Frey, B.: k-sparse autoencoders. arXiv:1312.5663 (2013)

  21. Makhzani, A., Frey, B.J.: Winner-take-all autoencoders. In: Advances in Neural Information Processing Systems, pp. 2773–2781 (2015)

    Google Scholar 

  22. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning, pp. 807–814 (2010)

    Google Scholar 

  23. Ng, A.Y.: Feature selection, l1 vs. l2 regularization, and rotational invariance. In: Proceedings of the 21st International Conference on Machine Learning, p. 78. ACM (2004)

    Google Scholar 

  24. O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map. preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34(1), 171–175 (1971)

    Article  Google Scholar 

  25. O’Keefe, J., Nadel, L.: The Hippocampus as a Cognitive Map. Clarendon Press, Oxford (1978)

    Google Scholar 

  26. Rasmus, A., Berglund, M., Honkala, M., Valpola, H., Raiko, T.: Semi-supervised learning with ladder networks. In: Advances in Neural Information Processing Systems, pp. 3532–3540 (2015)

    Google Scholar 

  27. Salakhutdinov, R.: Learning deep generative models. Ann. Rev. Stat. Appl. 2, 361–385 (2015)

    Article  Google Scholar 

  28. Schmidhuber, J.: Driven by compression progress: a simple principle explains essential aspects of subjective beauty, novelty, surprise, interestingness, attention, curiosity, creativity, art, science, music, jokes. In: Pezzulo, G., Butz, M.V., Sigaud, O., Baldassarre, G. (eds.) Anticipatory Behavior in Adaptive Learning Systems. LNCS, vol. 5499, pp. 48–76. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  29. Schönfeld, F., Wiskott, L.: Modeling place field activity with hierarchical slow feature analysis. Frontiers Comp. Neurosci. 9 (2015)

    Google Scholar 

  30. Sun, Y., Mao, H., Sang, Y., Yi, Z.: Explicit guiding auto-encoders for learning meaningful representation. Neural Comp. Appl., 1–8 (2015)

    Google Scholar 

  31. Szepesvári, C., Lőrincz, A.: An integrated architecture for motion-control and path-planning. J. Robot. Syst. 15(1), 1–15 (1998)

    Article  MATH  Google Scholar 

  32. Szita, I., Lőrincz, A.: Optimistic initialization and greediness lead to polynomial time learning in factored MDPs. In: Proceddings of the 26th International Conference on Machine Learning, pp. 1001–1008. ACM (2009)

    Google Scholar 

  33. Szita, I., Takács, B., Lőrincz, A.: \(\varepsilon \)-MDPs: Learning in varying environments. J. Mach. Learn. Res. 3, 145–174 (2003)

    MathSciNet  MATH  Google Scholar 

  34. Tenenbaum, J.B., Freeman, W.T.: Separating style and content with bilinear models. Neural Comp. 12, 1247–1283 (2000)

    Article  Google Scholar 

  35. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Stat. Soc. Ser. B (Meth.) 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  36. Tősér, Z., Lőrincz, A.: The cyber-physical system approach towards artificial general intelligence: the problem of verification. In: Bieger, J., Goertzel, B., Potapov, A. (eds.) AGI 2015. LNCS, vol. 9205, pp. 373–383. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  37. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. Info. Theo. 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv:1212.5701 (2012)

Download references

Acknowledgments

This work was supported by the EIT Digital grant (Grant No. 16257). Helpful comments from Gábor Szirtes are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Lőrincz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Lőrincz, A., Sárkány, A., Milacski, Z.Á., Tősér, Z. (2016). Estimating Cartesian Compression via Deep Learning. In: Steunebrink, B., Wang, P., Goertzel, B. (eds) Artificial General Intelligence. AGI 2016. Lecture Notes in Computer Science(), vol 9782. Springer, Cham. https://doi.org/10.1007/978-3-319-41649-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41649-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41648-9

  • Online ISBN: 978-3-319-41649-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics