Skip to main content

The Working Posture Controller—Automated Assessment and Optimisation of the Working Posture During the Process

  • Conference paper
  • First Online:
Advances in Applied Digital Human Modeling and Simulation

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 481))

Abstract

We present the Working Posture Controller (WPC), a novel technology to help workers preventing posture-related Musculo-skeletal disorders. The innovation lies in the fact that the system does not require tedious work place design or process planning, since it automatises these steps. We discuss this technology from different views including a first technical evaluation, discussions concerning use cases, safety and economic and legal challenges when integrating such a technology into the production line.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fit for Work Europe: Why early management of chronic disease in the EU workforce should be a priority: a call for action for the Latvian Presidency of the EU & Member States, Riga (2015)

    Google Scholar 

  2. Nguyen, T.D., Kleinsorge, M., Postawa, A., Wolf, K., Scheumann, R., Krüger, J., Seliger, G.: Human centric automation: using marker-less motion capturing for ergonomics analysis and work assistance in manufacturing processes. Proceedings of the 11th Global Conference on Sustainable Manufacturing (GCSM)—Innovative Solutions, Berlin. 586–592 (2013)

    Google Scholar 

  3. Nguyen, T.D., Kleinsorge, M., Kruger, J.: ErgoAssist: An assistance system to maintain ergonomic guidelines at workplaces. Emerging Technology and Factory Automation (ETFA), 2014 IEEE, pp 1–4. IEEE (2014)

    Google Scholar 

  4. Punnett, L., Wegman, D.H.: Work-related musculoskeletal disorders: the epidemiologic evidence and the debate. J. Electromyogr. Kinesiol. 14, 13–23 (2004)

    Article  Google Scholar 

  5. Putz-Anderson, V., Bernard, B.P., Burt, S.E., Cole, L.L., Fairfield-Estill, C., Fine, L.J., Grant, K.A., Gjessing, C., Jenkins, L., Hurrell Jr, J.J., et al.: Musculoskeletal disorders and workplace factors. National Institute for Occupational Safety and Health (NIOSH) (1997)

    Google Scholar 

  6. Goggins, R.W., Spielholz, P., Nothstein, G.L.: Estimating the effectiveness of ergonomics interventions through case studies: implications for predictive cost-benefit analysis. J Safety Res. 39, 339–344 (2008)

    Article  Google Scholar 

  7. Schmidtler, J., Hölzel, C., Knott, V., Bengler, K.: Human Centered Assistance Applications for Production. Adv. Ergon. Manuf. Manag. Enterp. Future 13, 380 (2014)

    Google Scholar 

  8. Engels, J.A., Van der Gulden, J.W.J., Senden, T.F., Kolk, J.J., Binkhorst, R.A.: The effects of an ergonomic-educational course. Int. Arch. Occup. Environ. Health 71, 336–342 (1998)

    Article  Google Scholar 

  9. Bergamasco, R., Girola, C., Colombini, D.: Guidelines for designing jobs featuring repetitive tasks. Ergonomics 41, 1364–1383 (1998)

    Article  Google Scholar 

  10. Das, B., Grady, R.M.: Industrial workplace layout design An application of engineering anthropometry. Ergonomics 26, 433–447 (1983)

    Article  Google Scholar 

  11. Muggleton, J.M., Allen, R., Chappell, P.H.: Hand and arm injuries associated with repetitive manual work in industry: a review of disorders, risk factors and preventive measures. Ergonomics 42, 714–739 (1999)

    Article  Google Scholar 

  12. Ding, Z.Q., Luo, Z.Q., Causo, A., Chen, I.M., Yue, K.X., Yeo, S.H., Ling, K.V.: Inertia sensor-based guidance system for upperlimb posture correction. Med. Eng. Phys. 35, 269–276 (2013)

    Article  Google Scholar 

  13. Delleman, N.J., Haslegrave, C.M., Chaffin, D.B. (eds.): Working postures and movements: tools for evaluation and engineering. CRC Press, Boca Raton (2004)

    Google Scholar 

  14. Lämkull, D., Hanson, L.: Roland Örtengren: A comparative study of digital human modelling simulation results and their outcomes in reality: a case study within manual assembly of automobiles. Int. J. Ind. Ergonom. 39, 428–441 (2009)

    Article  Google Scholar 

  15. Martin, C.C., Burkert, D.C., Choi, K.R., Wieczorek, N.B., McGregor, P.M., Herrmann, R.A., Beling, P.A.: A real-time ergonomic monitoring system using the Microsoft Kinect. In: Systems and Information Design Symposium (SIEDS), 2012 IEEE. 50–55. IEEE (2012)

    Google Scholar 

  16. Krüger, J., Lien, T.K., Verl, A.: Cooperation of human and machines in assembly lines. CIRP Ann. Manuf. Techn. 58, 628–646 (2009)

    Article  Google Scholar 

  17. Yang, C.-J., Zhang, J.-F., Chen, Y., Dong, Y.-M., Zhang, Y.: A review of exoskeleton-type systems and their key technologies. Proc. Inst. Mech. Eng. C J. 222, 1599–1612 (2008)

    Article  Google Scholar 

  18. Thomas, C., Busch, F., Kuhlenkoetter, B., Deuse, J.: Process and human safety in human-robot-interaction—a hybrid assistance system for welding applications. In: Proceedings of the 4th International Conference on Intelligent Robotics and Applications—Volume Part I (2011)

    Google Scholar 

  19. Schaub, K., Caragnano, G., Britzke, B., Bruder, R.: The European assembly worksheet. TIES. 14, 616–639 (2013)

    Google Scholar 

  20. Schaub, K., Wakula, J., Berg, K., Kaiser, B., Bruder, R., Glitsch, U., Ellegast, R.-P.: The assembly specific force atlas: The assembly specific force Atlas. Hum Factors Ergon Manuf. 25, 329–339 (2015)

    Article  Google Scholar 

  21. Neuhaus, M., Healy, G.N., Dunstan, D.W., Owen, N., Eakin, E.G.: Workplace sitting and height-adjustable workstations. Am. J. Prev. Med. 46, 30–40 (2014)

    Article  Google Scholar 

  22. Haddadin, S., Albu-Schaffer, A., Hirzinger, G.: Requirements for safe robots: measurements, analysis and new insights. Int. J. Robot. Res. 28, 1507–1527 (2009)

    Article  Google Scholar 

  23. Bundesministerium für Arbeit und Soziales (BMAS)/Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA): Sicherheit und Gesundheit bei der Arbeit 2014, Dortmund (2015)

    Google Scholar 

Download references

Acknowledgments

This research is funded by the German Research Foundation (DFG) in the Collaborative Research Centre (CRC) SFB 1026 Sustainable Manufacturing Shaping Global Value Creation at Technische Universität Berlin. The authors would like to thank Jan Kuschan for providing valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to The Duy Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Nguyen, T.D., Pilz, C., Krüger, J. (2017). The Working Posture Controller—Automated Assessment and Optimisation of the Working Posture During the Process. In: Duffy, V. (eds) Advances in Applied Digital Human Modeling and Simulation. Advances in Intelligent Systems and Computing, vol 481. Springer, Cham. https://doi.org/10.1007/978-3-319-41627-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41627-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41626-7

  • Online ISBN: 978-3-319-41627-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics