Skip to main content

Robust Approaches to Pension Fund Asset Liability Management Under Uncertainty

  • Chapter
  • First Online:
Optimal Financial Decision Making under Uncertainty

Abstract

This entry considers the problem of a typical pension fund that collects premiums from sponsors or employees and is liable for fixed payments to its customers after retirement. The fund manager’s goal is to determine an investment strategy so that the fund can cover its liabilities while minimizing contributions from its sponsors and maximizing the value of its assets. We develop robust optimization and scenario-based stochastic programming approaches for optimal asset-liability management, taking into consideration the uncertainty in asset returns and future liabilities. Our focus is on computational tractability and ease of implementation under conditions typically encountered in practice, such as asymmetries in the distributions of asset returns. Computational results from tests with real and generated data are presented to illustrate the performance of these models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Ben-Tal, A. Nemirovski, Robust convex optimization. Math. Oper. Res. 23 (4), 769–805 (1998)

    Article  Google Scholar 

  2. A. Ben-Tal, A. Nemirovski, Robust solutions of uncertain linear programs. Oper. Res. Lett. 25 (1), 1–13 (1999)

    Article  Google Scholar 

  3. A. Ben-Tal, A. Nemirovski, Robust solutions of linear programming problems contaminated with uncertain data. Math. Program. 88, 411–424 (2000)

    Article  Google Scholar 

  4. A. Ben-Tal, A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. MPS-SIAM Series on Optimization (Society for Industrial and Applied Mathematics, Philadelphia, 2001)

    Google Scholar 

  5. A. Ben-Tal, T. Margalit, A. Nemirovski, Robust modeling of multi-stage portfolio problems, in High-Performance Optimization, ed. by H. Frenk, K. Roos, T. Terlaky, S. Zhang (Kluwer Academic Publishers, Dordrecht, 2000), pp. 303–328

    Chapter  Google Scholar 

  6. A. Ben-Tal, L. El Ghaoui, A. Nemirovski, Robust Optimization (Princeton University Press, Princeton, 2009)

    Book  Google Scholar 

  7. D. Bertsimas, D. Pachamanova, Robust multiperiod portfolio management in the presence of transaction costs. Comput. Oper. Res. 35 (1), 3–17 (2008)

    Article  Google Scholar 

  8. D. Bertsimas, M. Sim, The price of robustness. Oper. Res. 52 (1), 35–53 (2004)

    Article  Google Scholar 

  9. D. Bertsimas, D. Pachamanova, M. Sim, Robust linear optimization under general norms. Oper. Res. Lett. 32, 510–516 (2004)

    Article  Google Scholar 

  10. G.C.E. Boender A hybrid simulation/optimization scenario model for asset/liability management. Eur. J. Oper. Res. 99 (1), 126–135 (1997)

    Article  Google Scholar 

  11. E. Bogentoft, H.E. Romeijn, S. Uryasev, Asset/liability management for pension funds using CVaR constraints. J. Risk Financ. 3 (1), 57–71 (2001)

    Article  Google Scholar 

  12. J. Campbell, A. Lo, A. MacKinlay, The Econometrics of Financial Markets (Princeton University Press, Princeton, NJ, 1997)

    Google Scholar 

  13. S. Ceria, R. Stubbs, Incorporating estimation errors into portfolio selection: robust portfolio construction. J. Asset Manage. 7 (2), 109–127 (2006)

    Article  Google Scholar 

  14. X. Chen, M. Sim, P. Sun, A robust optimization perspective on stochastic programming. Oper. Res. 55 (6), 1058–1071 (2007)

    Article  Google Scholar 

  15. G. Consigli, M.A.H. Dempster, Dynamic stochastic programming for asset-liability management. Ann. Oper. Res. 81, 131–162 (1998)

    Article  Google Scholar 

  16. A. Consiglio, F. Cocco, S.A. Zenios, Asset and liability modeling for participating policies with guarantees. Eur. J. Oper. Res. 186 (1), 380–404 (2008)

    Article  Google Scholar 

  17. C.L. Dert, A dynamic model for asset liability management for defined benefit pension funds, in Worldwide Asset and Liability Modeling, ed. by W.T. Ziemba, J.M. Mulvey (reprinted) (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  18. G. Duffee, The long-run behavior of firms’ stock returns: evidence and interpretations, working paper, Haas School of Business, University of California at Berkeley, Berkeley, CA (2002)

    Google Scholar 

  19. L. El Ghaoui, H. Lebret, Robust solutions to least-squares problems with uncertain data. SIAM J. Matrix Anal. Appl. 18 (4), 1035–1064 (2007)

    Article  Google Scholar 

  20. L. El Ghaoui, M. Oks, F. Oustry, Worst-case value-at-risk and robust portfolio optimization: a conic programming approach. Oper. Res. 51 (4), 543–556 (2003)

    Article  Google Scholar 

  21. L.F. Escudero, A. Garín, M. Merino, G. Pérez, On multistage stochastic integer programming for incorporating logical constraints in asset and liability management under uncertainty. Comput. Manage. Sci. 6, 307–327 (2009)

    Article  Google Scholar 

  22. E. Fama, Foundations of Finance (Basic Books, New York, 1976)

    Google Scholar 

  23. D. Goldfard, G. Iyengar, Robust portfolio selection problem. Math. Oper. Res. 28 (1), 1–37 (2003)

    Article  Google Scholar 

  24. A. Goyal, I. Welch, A comprehensive look at the empirical performance of equity premium prediction. Rev. Financ. Stud. 21:1455–1508 (2008)

    Article  Google Scholar 

  25. N. Gulpinar, B. Rustem, Optimal decisions and robust methods for forecast errors. Comput. Stat. Data Anal. 51, 3595–3611 (2007a)

    Google Scholar 

  26. N. Gulpinar, B. Rustem, Worst-case optimal robust decisions for multi-period portfolio optimization. Eur. J. Oper. Res. 183 (3), 981–1000 (2007b)

    Google Scholar 

  27. N. Gulpinar, B. Rustem, R. Settergren, Simulation and optimization approaches to scenario generation. J. Econ. Dyn. Control 28 (1–2), 1291–1315 (2004)

    Article  Google Scholar 

  28. P. Hilli, M. Koivu, T. Pennanen, Optimal construction of a fund of funds. Eur. Actuar. J. 1, 345–359 (2011)

    Article  Google Scholar 

  29. R. Kouwenberg, Scenario generation and stochastic programming models for asset liability management. Eur. J. Oper. Res. 134 (2), 279–292 (2001)

    Article  Google Scholar 

  30. K. Natarajan, D. Pachamanova, M. Sim, Incorporating asymmetric distributional information in robust value-at-risk optimization. Manage. Sci. 54 (3):573–585 (2008)

    Article  Google Scholar 

  31. K. Natarajan, D. Pachamanova, M. Sim, Constructing risk measures from uncertainty sets. Oper. Res. 57 (5):1129–1141 (2009)

    Article  Google Scholar 

  32. J. Löfberg, YALMIP: a toolbox for modeling and optimization in MATLAB, in Proceedings of the CACSD Conference, Taipei (2004)

    Google Scholar 

  33. W.T. Ziemba, J.M. Mulvey (eds.), Worldwide Asset and Liability Modeling (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dessislava Pachamanova .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Theorem 1.

Let us derive the robust counterpart of the first constraint in the optimization problem formulation \( (\mathcal{P}_{sym}^{R}) \). The derivation of the robust counterparts of the remaining constraints is similar. The first constraint can be rewritten as

$$ \displaystyle{\nu -\tilde{\boldsymbol{\alpha }}'\boldsymbol{\kappa } +\lambda \gamma _{T}W_{T} \leq 0.} $$

The robust counterpart of the original constraint can be written as

$$ \displaystyle{\nu -\text{Min}_{\tilde{\boldsymbol{\alpha }}\in \mathcal{S}\mathcal{U}^{o}}\left \{\tilde{\boldsymbol{\alpha }}'\boldsymbol{\kappa }\right \} +\lambda \gamma _{T}W_{T} \leq 0} $$

Intuitively, we would like the constraint to be satisfied even if the uncertain coefficients take their worst-case values within the uncertainty set. In this case, the worst-case value of the uncertain expression is obtained when \( \tilde{\boldsymbol{\alpha }}'\boldsymbol{\kappa } \) is at its minimum value for values of \( \tilde{\boldsymbol{\alpha }} \) within the uncertainty set. (If it was at its maximum value, it would be easier, not harder, for the inequality to be satisfied because of the negative sign in front of the vector product.) We solve the inner minimization problem first. The inner problem is in the explicit form

$$ \displaystyle{\begin{array}{rl} \text{Min}_{\tilde{\boldsymbol{\alpha }}}&\tilde{\boldsymbol{\alpha }}'\boldsymbol{\kappa } \\ \text{s.t.}&\left \|\left (\boldsymbol{\Xi }^{o}\right )^{-\frac{1} {2} }\left (\tilde{\boldsymbol{\alpha }}-\mathrm{E}[\tilde{\boldsymbol{\alpha }}]\right )\right \|_{2} \leq \varOmega ^{o}\end{array} } $$

Let π ≥ 0 be a Lagrangian multiplier for the constraint in the optimization problem above. The Lagrangian function is

$$ \displaystyle{ \mathcal{L}(\tilde{\boldsymbol{\alpha }},\pi ) =\tilde{\boldsymbol{\alpha }} '\boldsymbol{\kappa } +\pi \left (\left \|\left (\boldsymbol{\Xi }^{o}\right )^{-\frac{1} {2} }\left (\tilde{\boldsymbol{\alpha }}-\mathrm{E}[\tilde{\boldsymbol{\alpha }}]\right )\right \|_{2} -\varOmega ^{o}\right ). } $$

The first-order optimality condition is

$$ \displaystyle{ \frac{\partial \mathcal{L}} {\partial \tilde{\boldsymbol{\alpha }}} =\boldsymbol{\kappa } + \frac{\pi } {\left \|\left (\boldsymbol{\Xi }^{o}\right )^{-\frac{1} {2} }\left (\tilde{\boldsymbol{\alpha }}-\mathrm{E}[\tilde{\boldsymbol{\alpha }}]\right )\right \|_{2}}\left (\boldsymbol{\Xi }^{o}\right )^{-1}\left (\tilde{\boldsymbol{\alpha }}-\mathrm{E}[\tilde{\boldsymbol{\alpha }}]\right ) = 0 } $$
(4.23)

and the complementarity condition is

$$ \displaystyle{ \pi \left (\left \|\left (\boldsymbol{\Xi }^{o}\right )^{-\frac{1} {2} }\left (\tilde{\boldsymbol{\alpha }}-\mathrm{E}[\tilde{\boldsymbol{\alpha }}]\right )\right \|_{2} -\varOmega ^{o}\right ) = 0 } $$
(4.24)

Using the optimality conditions stated in (4.23) and (4.24), we can find the optimal value of the random parameter within the uncertainty set. Note that in (4.24), π ≠ 0. In addition,

$$ \displaystyle\begin{array}{rcl} \left \|\left (\boldsymbol{\Xi }^{o}\right )^{-\frac{1} {2} }\left (\tilde{\boldsymbol{\alpha }}-\mathrm{E}[\tilde{\boldsymbol{\alpha }}]\right )\right \|_{2} =\varOmega ^{o}& &{}\end{array} $$
(4.25)

From (4.23) and (4.25), we obtain

$$ \displaystyle{ \left (\boldsymbol{\Xi }^{o}\right )^{-1}\left (\tilde{\boldsymbol{\alpha }}-\mathrm{E}[\tilde{\boldsymbol{\alpha }}]\right ) = -\frac{\varOmega ^{o}} {\pi } \boldsymbol{\kappa } \Rightarrow \tilde{\boldsymbol{\alpha }}-\mathrm{E}[\tilde{\boldsymbol{\alpha }}] = \left (-\frac{\varOmega ^{o}} {\pi } \right )\boldsymbol{\Xi }^{o}\boldsymbol{\kappa }. } $$
(4.26)

In addition, it can be easily shown that

$$ \displaystyle\begin{array}{rcl} \left \|\left (\boldsymbol{\Xi }^{o}\right )^{-\frac{1} {2} }\left (\tilde{\boldsymbol{\alpha }}-\mathrm{E}[\tilde{\boldsymbol{\alpha }}]\right )\right \|_{2}& =& \sqrt{\left (\tilde{\boldsymbol{\alpha }}-\mathrm{E}[\tilde{\boldsymbol{\alpha }}] \right ) \left (\boldsymbol{\Xi }^{o } \right ) ^{-1 } \left (\tilde{\boldsymbol{\alpha }}-\mathrm{E}[\tilde{\boldsymbol{\alpha }}] \right )} \\ & =& \sqrt{\left (-\frac{\varOmega ^{o } } {\pi } \boldsymbol{\Xi }^{o}\boldsymbol{\kappa }\right )'\left (\boldsymbol{\Xi }^{o}\right )^{-1}\left (-\frac{\varOmega ^{o}} {\pi } \boldsymbol{\Xi }^{o}\boldsymbol{\kappa }\right )} \\ & =& \frac{\varOmega ^{o}} {\pi } \sqrt{\boldsymbol{\kappa }'\boldsymbol{\Xi }^{o}\boldsymbol{\kappa }}. {}\end{array} $$
(4.27)

Using (4.27) and (4.25), the Lagrangian multiplier is found as \( \pi = \sqrt{\boldsymbol{\kappa }'\boldsymbol{\Xi }^{o}\boldsymbol{\kappa }} \). Substituting this in (4.23) confirms that the optimal solution of the inner problem is

$$ \displaystyle{ \tilde{\boldsymbol{\alpha }}'\boldsymbol{\kappa } =\mathrm{ E}[\tilde{\boldsymbol{\alpha }}]'\boldsymbol{\kappa } -\varOmega ^{o}\sqrt{\boldsymbol{\kappa }'\boldsymbol{\Xi }^{o}\boldsymbol{\kappa }}. } $$

The robust counterparts of the other constraints that contain uncertain coefficients, namely the liability and the cash balance constraints, can be derived in a similar manner. As a result, the robust model for \( (\mathcal{P}^{R}) \) can be obtained as stated in Theorem 1.

Proof of Theorem 2.

The theorem follows from (4.17) and the fact that, given the representation of the uncertain coefficients as linear combinations of factors, the constraints can be written in the form (4.15). To see how the constraint \( \tilde{\boldsymbol{\alpha }}'\boldsymbol{\kappa } -\lambda W_{T}\gamma _{T}-\nu \geq 0 \), for example, can be written in the form (4.15), note that it can be written in terms of the uncertain factors \( \tilde{\mathbf{z}}^{\alpha } \) as

$$ \displaystyle{ \tilde{\boldsymbol{\alpha }}'\boldsymbol{\kappa } -\lambda W_{T}\gamma _{T}-\nu =\mathop{\underbrace{ \hat{\boldsymbol{\alpha }}'\boldsymbol{\kappa } -\lambda W_{T}\gamma _{T}-\nu }}\limits _{f_{0}(\boldsymbol{\kappa },\gamma _{T})} +\sum _{ j=1}^{M+T}\mathop{\underbrace{\mathbf{e}'_{ j}\left (\boldsymbol{\Delta }^{\alpha }\right )'\boldsymbol{\kappa }}}\limits _{f_{j}(\boldsymbol{\kappa })} \cdot \tilde{z}_{j}^{\alpha } } $$
(4.28)

Given (4.17), the robust counterpart of the constraint

$$ \displaystyle{\tilde{\boldsymbol{\alpha }}'\boldsymbol{\kappa } -\lambda W_{T}\gamma _{t}-\nu \geq 0} $$

when the uncertain factors \( \tilde{\mathbf{z}}^{\alpha } \) vary in uncertainty set \( \mathcal{A}\mathcal{U}^{o} \) is

$$ \displaystyle\begin{array}{rcl} \hat{\boldsymbol{\alpha }}'\boldsymbol{\kappa } -\lambda W_{T}\gamma _{t}-\nu & \geq & \varOmega ^{o}\vert \vert \mathbf{u}^{\alpha }\vert \vert + \left (\mathbf{r}^{\alpha }\right )'\left (\overline{\mathbf{z}}^{\alpha }\right ) + \left (\mathbf{s}^{\alpha }\right )'\left (\underline{\mathbf{z}}^{\alpha }\right ) {}\\ u_{j}^{\alpha }& \geq & -p_{ j}\left (\mathbf{e}_{j}'\left (\boldsymbol{\Delta }^{\alpha }\right )'\boldsymbol{\kappa } + r_{ j}^{\alpha } - s_{ j}^{\alpha }\right ),\quad j = 1,\ldots,M + T {}\\ u_{j}^{\alpha }& \geq & q_{ j}\left (\mathbf{e}_{j}'\left (\boldsymbol{\Delta }^{\alpha }\right )'\boldsymbol{\kappa } + r_{ j}^{\alpha } - s_{ j}^{\alpha }\right ),\quad j = 1,\ldots,M + T {}\\ \mathbf{r}^{\alpha },\mathbf{s}^{\alpha }& \geq & 0 {}\\ \end{array} $$

The robust counterparts of the remaining constraints can be derived in a similar manner.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pachamanova, D., Gülpınar, N., Çanakoğlu, E. (2017). Robust Approaches to Pension Fund Asset Liability Management Under Uncertainty. In: Consigli, G., Kuhn, D., Brandimarte, P. (eds) Optimal Financial Decision Making under Uncertainty. International Series in Operations Research & Management Science, vol 245. Springer, Cham. https://doi.org/10.1007/978-3-319-41613-7_4

Download citation

Publish with us

Policies and ethics