Skip to main content

Towards Quantitative Verification of Reaction Systems

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9726))

Abstract

Reaction systems are a formal model for computational processes inspired by the functioning of the living cell. The key feature of this model is that its behaviour is determined by the interactions of biochemical reactions of the living cell, and these interactions are based on the mechanisms of facilitation and inhibition. The formal treatment of reaction systems is qualitative as there is no direct representation of the number of molecules involved in biochemical reactions.

This paper introduces reaction systems with discrete concentrations which are an extension of reaction systems allowing for quantitative modelling. We demonstrate that although reaction systems with discrete concentrations are semantically equivalent to the original qualitative reaction systems, they provide much more succinct representations in terms of the number of molecules being used. We then define the problem of reachability for reaction systems with discrete concentrations, and provide its suitable encoding in smt, together with a verification method (bounded model checking) for reachability properties. Experimental results show that verifying reaction systems with discrete concentrations instead of the corresponding reaction systems is more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The experimental results were obtained using a system equipped with 3.7 GHz Intel Xeon E5 processor and 12 GB of memory, running Mac OS X 10.11.3.

References

  1. Azimi, S., Gratie, C., Ivanov, S., Manzoni, L., Petre, I., Porreca, A.E.: Complexity of model checking for reaction systems. Technical report. 1122, TUCS (2014)

    Google Scholar 

  2. Azimi, S., Gratie, C., Ivanov, S., Petre, I.: Dependency graphs and mass conservation in reaction systems. Technical report. 1123, TUCS (2014)

    Google Scholar 

  3. Azimi, S., Iancu, B., Petre, I.: Reaction system models for the heat shock response. Fundam. Inf. 131(3–4), 299–312 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Brijder, R., Ehrenfeucht, A., Main, M.G., Rozenberg, G.: A tour of reaction systems. Int. J. Found. Comput. Sci. 22(7), 1499–1517 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Corolli, L., Maj, C., Marini, F., Besozzi, D., Mauri, G.: An excursion in reaction systems: from computer science to biology. Theoret. Comput. Sci. 454, 95–108 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ehrenfeucht, A., Kleijn, J., Koutny, M., Rozenberg, G.: Reaction systems: a natural computing approach to the functioning of living cells. A Computable Universe, Understanding and Exploring Nature as Computation, pp. 189–208 (2012)

    Google Scholar 

  8. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundamenta Informaticae 75(1–4), 263–280 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Ehrenfeucht, A., Rozenberg, G.: Introducing time in reaction systems. Theoret. Comput. Sci. 410(4–5), 310–322 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Formenti, E., Manzoni, L., Porreca, A.E.: Cycles and global attractors of reaction systems. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 114–125. Springer, Heidelberg (2014)

    Google Scholar 

  11. Formenti, E., Manzoni, L., Porreca, A.E.: Fixed points and attractors of reaction systems. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds.) CiE 2014. LNCS, vol. 8493, pp. 194–203. Springer, Heidelberg (2014)

    Google Scholar 

  12. Formenti, E., Manzoni, L., Porreca, A.E.: On the complexity of occurrence and convergence problems in reaction systems. Nat. Comput., 1–7 (2014)

    Google Scholar 

  13. Hirvensalo, M.: On probabilistic and quantum reaction systems. Theor. Comput. Sci. 429(C), 134–143 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Horn, F., Jackson, R.: General mass action kinetics. Arch. Ration. Mech. Anal. 47(2), 81–116 (1972)

    Article  MathSciNet  Google Scholar 

  15. Męski, A., Penczek, W., Rozenberg, G.: Model checking temporal properties of reaction systems. Inf. Sci. 313, 22–42 (2015)

    Article  Google Scholar 

  16. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Salomaa, A.: Functions and sequences generated by reaction systems. Theoret. Comput. Sci. 466, 87–96 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Salomaa, A.: On state sequences defined by reaction systems. In: Constable, R.L., Silva, A. (eds.) Logic and Program Semantics, Kozen Festschrift. LNCS, vol. 7230, pp. 271–282. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Salomaa, A.: Functional constructions between reaction systems and propositional logic. Int. J. Found. Comput. Sci. 24(1), 147–160 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Salomaa, A.: Minimal and almost minimal reaction systems. Nat. Comput. 12(3), 369–376 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The study is cofounded by the European Union from resources of the European Social Fund. Project PO KL “Information technologies: Research and their interdisciplinary applications”, Agreement UDA-POKL.04.01.01-00-051/10-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Męski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Męski, A., Koutny, M., Penczek, W. (2016). Towards Quantitative Verification of Reaction Systems. In: Amos, M., CONDON, A. (eds) Unconventional Computation and Natural Computation. UCNC 2016. Lecture Notes in Computer Science(), vol 9726. Springer, Cham. https://doi.org/10.1007/978-3-319-41312-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41312-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41311-2

  • Online ISBN: 978-3-319-41312-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics