Skip to main content

Future Therapies for Primary Sclerosing Cholangitis

  • Chapter
  • First Online:
Primary Sclerosing Cholangitis

Abstract

Primary sclerosing cholangitis (PSC) is a rare disease characterized by inflammation and fibrosis of the intra- and extrahepatic bile ducts leading to biliary strictures, parenchymal fibrosis, and subsequent progression to cirrhosis and liver failure. The disease is often associated with concomitant inflammatory bowel disease (IBD) and has varied phenotype and disease progression. PSC is an orphan disease, and currently there is no effective treatment other than liver transplantation. Fortunately, recent breakthroughs in the understanding of the pathogenesis of liver diseases have unraveled several new targets for treatment of PSC. In this chapter, we review the current understanding of the pathogenesis of PSC and the rationale behind the novel therapeutic interventions. The launch of additional trials will bring us a step closer to new treatments and an eventual cure for PSC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirschfield GM, Karlsen TH, Lindor KD, et al. Primary sclerosing cholangitis. Lancet. 2013;382:1587–99.

    Article  PubMed  Google Scholar 

  2. LaRusso NF, Shneider BL, Black D, et al. Primary sclerosing cholangitis: summary of a workshop. Hepatology. 2006;44:746–64.

    Article  PubMed  Google Scholar 

  3. Porayko MK, Wiesner RH, LaRusso NF, et al. Patients with asymptomatic primary sclerosing cholangitis frequently have progressive disease. Gastroenterology. 1990;98:1594–602.

    Article  CAS  PubMed  Google Scholar 

  4. Olsson R, Broome U, Danielsson A, et al. Spontaneous course of symptoms in primary sclerosing cholangitis: relationships with biochemical and histological features. Hepatogastroenterology. 1999;46:136–41.

    CAS  PubMed  Google Scholar 

  5. Broome U, Bergquist A. Primary sclerosing cholangitis, inflammatory bowel disease, and colon cancer. Semin Liver Dis. 2006;26:31–41.

    Article  PubMed  Google Scholar 

  6. Burak K, Angulo P, Pasha TM, et al. Incidence and risk factors for cholangiocarcinoma in primary sclerosing cholangitis. Am J Gastroenterol. 2004;99:523–6.

    Article  PubMed  Google Scholar 

  7. Wang R, Leong RW. Primary sclerosing cholangitis as an independent risk factor for colorectal cancer in the context of inflammatory bowel disease: a review of the literature. World J Gastroenterol. 2014;20:8783–9.

    PubMed  PubMed Central  Google Scholar 

  8. Boonstra K, van Erpecum KJ, van Nieuwkerk KM, et al. Primary sclerosing cholangitis is associated with a distinct phenotype of inflammatory bowel disease. Inflamm Bowel Dis. 2012;18:2270–6.

    Article  PubMed  Google Scholar 

  9. Olsson R, Danielsson A, Jarnerot G, et al. Prevalence of primary sclerosing cholangitis in patients with ulcerative colitis. Gastroenterology. 1991;100:1319–23.

    Article  CAS  PubMed  Google Scholar 

  10. Eaton JE, Talwalkar JA, Lazaridis KN, et al. Pathogenesis of primary sclerosing cholangitis and advances in diagnosis and management. Gastroenterology. 2013;145:521–36.

    Article  CAS  PubMed  Google Scholar 

  11. Karlsen TH, Vesterhus M, Boberg KM. Review article: controversies in the management of primary biliary cirrhosis and primary sclerosing cholangitis. Aliment Pharmacol Ther. 2014;39:282–301.

    Article  CAS  PubMed  Google Scholar 

  12. Lammers WJ, Hirschfield GM, Corpechot C, et al. Development and validation of a scoring system to predict outcomes of patients With primary biliary cirrhosis receiving ursodeoxycholic acid therapy. Gastroenterology. 2015;149:1804–12.e4.

    Article  PubMed  Google Scholar 

  13. Lee J, Belanger A, Doucette JT, et al. Transplantation trends in primary biliary cirrhosis. Clin Gastroenterol Hepatol. 2007;5:1313–5.

    Article  PubMed  Google Scholar 

  14. EASL. Clinical practice guidelines: management of cholestatic liver diseases. J Hepatol. 2009;51:237–67.

    Article  Google Scholar 

  15. Chapman R, Fevery J, Kalloo A, et al. Diagnosis and management of primary sclerosing cholangitis. Hepatology. 2010;51:660–78.

    Article  CAS  PubMed  Google Scholar 

  16. Lindor KD, Kowdley KV, Luketic VA, et al. High-dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis. Hepatology. 2009;50:808–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Imam MH, Sinakos E, Gossard AA, et al. High-dose ursodeoxycholic acid increases risk of adverse outcomes in patients with early stage primary sclerosing cholangitis. Aliment Pharmacol Ther. 2011;34:1185–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Narumi S, Roberts JP, Emond JC, et al. Liver transplantation for sclerosing cholangitis. Hepatology. 1995;22:451–7.

    Article  CAS  PubMed  Google Scholar 

  19. Ganz M, Szabo G. Immune and inflammatory pathways in NASH. Hepatol Int. 2013;7:771–81.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Frazier TH, DiBaise JK, McClain CJ. Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury. JPEN J Parenter Enteral Nutr. 2011;35:14S–20.

    Article  CAS  PubMed  Google Scholar 

  21. Chait A, Kim F. Saturated fatty acids and inflammation: who pays the toll? Arterioscler Thromb Vasc Biol. 2010;30:692–3.

    Article  CAS  PubMed  Google Scholar 

  22. Liaskou E, Karikoski M, Reynolds GM, et al. Regulation of mucosal addressin cell adhesion molecule 1 expression in human and mice by vascular adhesion protein 1 amine oxidase activity. Hepatology. 2011;53:661–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weston CJ, Shepherd EL, Claridge LC, et al. Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. J Clin Invest. 2015;125:501–20.

    Article  PubMed  Google Scholar 

  24. Alisi A, Carsetti R, Nobili V. Pathogen- or damage-associated molecular patterns during nonalcoholic fatty liver disease development. Hepatology. 2011;54:1500–2.

    Article  CAS  PubMed  Google Scholar 

  25. Gauley J, Pisetsky DS. The translocation of HMGB1 during cell activation and cell death. Autoimmunity. 2009;42:299–301.

    Article  CAS  PubMed  Google Scholar 

  26. Nakanuma Y, Sasaki M, Harada K. Autophagy and senescence in fibrosing cholangiopathies. J Hepatol. 2015;62:934–45.

    Article  CAS  PubMed  Google Scholar 

  27. Tabibian JH, O’Hara SP, Trussoni CE, et al. Absence of the intestinal microbiota exacerbates hepatobiliary disease in a murine model of primary sclerosing cholangitis. Hepatology. 2016;63:185–96.

    Article  CAS  PubMed  Google Scholar 

  28. Farkkila M, Karvonen AL, Nurmi H, et al. Metronidazole and ursodeoxycholic acid for primary sclerosing cholangitis: a randomized placebo-controlled trial. Hepatology. 2004;40:1379–86.

    Article  CAS  PubMed  Google Scholar 

  29. Tabibian JH, Weeding E, Jorgensen RA, et al. Randomised clinical trial: vancomycin or metronidazole in patients with primary sclerosing cholangitis – a pilot study. Aliment Pharmacol Ther. 2013;37:604–12.

    Article  CAS  PubMed  Google Scholar 

  30. Silveira MG, Torok NJ, Gossard AA, et al. Minocycline in the treatment of patients with primary sclerosing cholangitis: results of a pilot study. Am J Gastroenterol. 2009;104:83–8.

    Article  CAS  PubMed  Google Scholar 

  31. Tabibian JH, Gossard A, El-Youssef M, et al. Prospective clinical trial of rifaximin therapy for patients with primary sclerosing cholangitis. Am J Ther. 2014. [Epub ahead of print].

    Google Scholar 

  32. Reshetnyak VI. Physiological and molecular biochemical mechanisms of bile formation. World J Gastroenterol. 2013;19:7341–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jones H, Alpini G, Francis H. Bile acid signaling and biliary functions. Acta Pharm Sin B. 2015;5:123–8.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Erlinger S. A HCO(3)(-)umbrella protects human cholangiocytes against bile salt-induced injury. Clin Res Hepatol Gastroenterol. 2012;36:7–9.

    Article  PubMed  Google Scholar 

  35. Beuers U, Maroni L, Elferink RO. The biliary HCO(3)(-) umbrella: experimental evidence revisited. Curr Opin Gastroenterol. 2012;28:253–7.

    Article  CAS  PubMed  Google Scholar 

  36. Hohenester S, Maillette de Buy Wenniger L, Jefferson DM, et al. Biliary bicarbonate secretion constitutes a protective mechanism against bile acid-induced injury in man. Dig Dis. 2011;29:62–5.

    Article  CAS  PubMed  Google Scholar 

  37. Erlinger S. Chronic fibrosing cholangiopathies: a consequence of a defective HCO(3)(-) “umbrella”? Clin Res Hepatol Gastroenterol. 2011;35:85–8.

    Article  CAS  PubMed  Google Scholar 

  38. Keitel V, Reich M, Haussinger D. TGR5: pathogenetic role and/or therapeutic target in fibrosing cholangitis? Clin Rev Allergy Immunol. 2015;48:218–25.

    Article  CAS  PubMed  Google Scholar 

  39. Li T, Apte U. Bile acid metabolism and signaling in cholestasis, inflammation, and cancer. Adv Pharmacol. 2015;74:263–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li T, Chiang JY. Bile acids as metabolic regulators. Curr Opin Gastroenterol. 2015;31:159–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Halilbasic E, Claudel T, Trauner M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond. J Hepatol. 2013;58:155–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Trauner M, Halilbasic E, Claudel T, et al. Potential of nor-ursodeoxycholic acid in cholestatic and metabolic disorders. Dig Dis. 2015;33:433–9.

    Article  PubMed  Google Scholar 

  43. Halilbasic E, Fuchs C, Hofer H, et al. Therapy of primary sclerosing cholangitis – today and tomorrow. Dig Dis. 2015;33 Suppl 2:149–63.

    Article  PubMed  Google Scholar 

  44. Hofmann AF, Zakko SF, Lira M, et al. Novel biotransformation and physiological properties of norursodeoxycholic acid in humans. Hepatology. 2005;42:1391–8.

    Article  CAS  PubMed  Google Scholar 

  45. Fickert P, Wagner M, Marschall HU, et al. 24-norUrsodeoxycholic acid is superior to ursodeoxycholic acid in the treatment of sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology. 2006;130:465–81.

    Article  CAS  PubMed  Google Scholar 

  46. Moustafa T, Fickert P, Magnes C, et al. Alterations in lipid metabolism mediate inflammation, fibrosis, and proliferation in a mouse model of chronic cholestatic liver injury. Gastroenterology. 2012;142:140–51.e12.

    Article  CAS  PubMed  Google Scholar 

  47. Beuers U, Kullak-Ublick GA, Pusl T, et al. Medical treatment of primary sclerosing cholangitis: a role for novel bile acids and other (post-)transcriptional modulators? Clin Rev Allergy Immunol. 2009;36:52–61.

    Article  CAS  PubMed  Google Scholar 

  48. Hov JR, Keitel V, Schrumpf E, et al. TGR5 sequence variation in primary sclerosing cholangitis. Dig Dis. 2011;29:78–84.

    Article  CAS  PubMed  Google Scholar 

  49. Hov JR, Keitel V, Laerdahl JK, et al. Mutational characterization of the bile acid receptor TGR5 in primary sclerosing cholangitis. PLoS One. 2010;5:e12403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nijmeijer RM, Gadaleta RM, van Mil SW, et al. Farnesoid X receptor (FXR) activation and FXR genetic variation in inflammatory bowel disease. PLoS One. 2011;6:e23745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stanimirov B, Stankov K, Mikov M. Bile acid signaling through farnesoid X and TGR5 receptors in hepatobiliary and intestinal diseases. Hepatobiliary Pancreat Dis Int. 2015;14:18–33.

    Article  PubMed  Google Scholar 

  52. Thomas C, Pellicciari R, Pruzanski M, et al. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov. 2008;7:678–93.

    Article  CAS  PubMed  Google Scholar 

  53. Gnerre C, Blattler S, Kaufmann MR, et al. Regulation of CYP3A4 by the bile acid receptor FXR: evidence for functional binding sites in the CYP3A4 gene. Pharmacogenetics. 2004;14:635–45.

    Article  CAS  PubMed  Google Scholar 

  54. Barbier O, Torra IP, Sirvent A, et al. FXR induces the UGT2B4 enzyme in hepatocytes: a potential mechanism of negative feedback control of FXR activity. Gastroenterology. 2003;124:1926–40.

    Article  CAS  PubMed  Google Scholar 

  55. Pellicciari R, Fiorucci S, Camaioni E, et al. 6alpha-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J Med Chem. 2002;45:3569–72.

    Article  CAS  PubMed  Google Scholar 

  56. Ali AH, Carey EJ, Lindor KD. Recent advances in the development of farnesoid X receptor agonists. Ann Transl Med. 2015;3:5.

    PubMed  PubMed Central  Google Scholar 

  57. Baghdasaryan A, Claudel T, Gumhold J, et al. Dual farnesoid X receptor/TGR5 agonist INT-767 reduces liver injury in the Mdr2-/- (Abcb4-/-) mouse cholangiopathy model by promoting biliary HCO(-)(3) output. Hepatology. 2011;54:1303–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Modica S, Petruzzelli M, Bellafante E, et al. Selective activation of nuclear bile acid receptor FXR in the intestine protects mice against cholestasis. Gastroenterology. 2012;142:355–65.e1-4.

    Article  CAS  PubMed  Google Scholar 

  59. Pols TW, Noriega LG, Nomura M, et al. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol. 2011;54:1263–72.

    Article  CAS  PubMed  Google Scholar 

  60. Luo J, Ko B, Elliott M, et al. A nontumorigenic variant of FGF19 treats cholestatic liver diseases. Sci Transl Med. 2014;6:247ra100.

    Article  CAS  PubMed  Google Scholar 

  61. Keitel V, Cupisti K, Ullmer C, et al. The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders. Hepatology. 2009;50:861–70.

    Article  CAS  PubMed  Google Scholar 

  62. Beuers U, Trauner M, Jansen P, et al. New paradigms in the treatment of hepatic cholestasis: from UDCA to FXR, PXR and beyond. J Hepatol. 2015;62:S25–37.

    Article  CAS  PubMed  Google Scholar 

  63. Bhatnagar S, Damron HA, Hillgartner FB. Fibroblast growth factor-19, a novel factor that inhibits hepatic fatty acid synthesis. J Biol Chem. 2009;284:10023–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kir S, Beddow SA, Samuel VT, et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science. 2011;331:1621–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cai SY, He H, Nguyen T, et al. Retinoic acid represses CYP7A1 expression in human hepatocytes and HepG2 cells by FXR/RXR-dependent and independent mechanisms. J Lipid Res. 2010;51:2265–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. He H, Mennone A, Boyer JL, et al. Combination of retinoic acid and ursodeoxycholic acid attenuates liver injury in bile duct-ligated rats and human hepatic cells. Hepatology. 2011;53:548–57.

    Article  CAS  PubMed  Google Scholar 

  67. Wang H, Dan Z, Jiang H. Effect of all-trans retinoic acid on liver fibrosis induced by common bile duct ligation in rats. J Huazhong Univ Sci Technolog Med Sci. 2008;28:553–7.

    Article  CAS  PubMed  Google Scholar 

  68. Hisamori S, Tabata C, Kadokawa Y, et al. All-trans-retinoic acid ameliorates carbon tetrachloride-induced liver fibrosis in mice through modulating cytokine production. Liver Int. 2008;28:1217–25.

    Article  CAS  PubMed  Google Scholar 

  69. Cai SY, Mennone A, Soroka CJ, et al. All-trans-retinoic acid improves cholestasis in alpha-naphthylisothiocyanate-treated rats and Mdr2-/- mice. J Pharmacol Exp Ther. 2014;349:94–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ghonem NS, Assis DN, Boyer JL. Fibrates and cholestasis. Hepatology. 2015;62:635–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Honda A, Ikegami T, Nakamuta M, et al. Anticholestatic effects of bezafibrate in patients with primary biliary cirrhosis treated with ursodeoxycholic acid. Hepatology. 2013;57:1931–41.

    Article  CAS  PubMed  Google Scholar 

  72. Parra JL, Reddy KR. Hepatotoxicity of hypolipidemic drugs. Clin Liver Dis. 2003;7:415–33.

    Article  PubMed  Google Scholar 

  73. Miethke AG, Zhang W, Simmons J, et al. Pharmacological inhibition of apical sodium-dependent bile acid transporter changes bile composition and blocks progression of sclerosing cholangitis in multidrug resistance 2 knockout mice. Hepatology. 2016;63:512–23.

    Article  CAS  PubMed  Google Scholar 

  74. Baghdasaryan A, Fuchs CD, Osterreicher CH, et al. Inhibition of intestinal bile acid absorption improves cholestatic liver and bile duct injury in a mouse model of sclerosing cholangitis. J Hepatol. 2016;64(3):674–81.

    Article  CAS  PubMed  Google Scholar 

  75. Barry-Hamilton V, Spangler R, Marshall D, et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med. 2010;16:1009–17.

    Article  CAS  PubMed  Google Scholar 

  76. Ikenaga N, Yoshida S, Liu SB, et al. Selective inhibition of lysyl oxidase like 2 (LOXL2) using a therapeutic monoclonal antibody suppresses the progression of biliary fibrosis in novel PSC-like mouse model. Hepatology. 2013;58:581A–2.

    Google Scholar 

  77. Hsieh WC, Mackinnon AC, Lu WY, et al. Galectin-3 regulates hepatic progenitor cell expansion during liver injury. Gut. 2015;64:312–21.

    Article  CAS  PubMed  Google Scholar 

  78. Harada K, Nakanuma Y. Innate immunity in the pathogenesis of cholangiopathy: a recent update. Inflamm Allergy Drug Targets. 2012;11:478–83.

    Article  CAS  PubMed  Google Scholar 

  79. Marra F, Romanelli RG, Giannini C, et al. Monocyte chemotactic protein-1 as a chemoattractant for human hepatic stellate cells. Hepatology. 1999;29:140–8.

    Article  CAS  PubMed  Google Scholar 

  80. Tsuneyama K, Harada K, Yasoshima M, et al. Monocyte chemotactic protein-1, -2, and -3 are distinctively expressed in portal tracts and granulomata in primary biliary cirrhosis: implications for pathogenesis. J Pathol. 2001;193:102–9.

    Article  CAS  PubMed  Google Scholar 

  81. Tabibian JH, O’Hara SP, Splinter PL, et al. Cholangiocyte senescence by way of N-ras activation is a characteristic of primary sclerosing cholangitis. Hepatology. 2014;59:2263–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Thompson M, Saag M, Dejesus E, et al. A 48-week randomized Phase 2b study evaluating cenicriviroc vs. efavirenz in treatment-naive HIV-infected adults with CCR5-tropic virus. AIDS. 2016;30(6):869–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tinmouth J, Lee M, Wanless IR, et al. Apoptosis of biliary epithelial cells in primary biliary cirrhosis and primary sclerosing cholangitis. Liver. 2002;22:228–34.

    Article  PubMed  Google Scholar 

  84. Masuoka HC, Vuppalanchi R, Deppe R, et al. Individuals with primary sclerosing cholangitis have elevated levels of biomarkers for apoptosis but not necrosis. Dig Dis Sci. 2015;60:3642–6.

    Article  CAS  PubMed  Google Scholar 

  85. Talwalkar JA, Lindor KD. Natural history and prognostic models in primary sclerosing cholangitis. Best Pract Res Clin Gastroenterol. 2001;15:563–75.

    Article  CAS  PubMed  Google Scholar 

  86. Ponsioen CY, Chapman RW, Chazouilleres O, et al. Surrogate endpoints for clinical trials in primary sclerosing cholangitis; review and results from an International PSC Study Group consensus process. Hepatology. 2016;63(4):1357–67.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Vuppalanchi MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lammert, C., Vuppalanchi, R. (2017). Future Therapies for Primary Sclerosing Cholangitis. In: Forman, L. (eds) Primary Sclerosing Cholangitis. Springer, Cham. https://doi.org/10.1007/978-3-319-40908-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40908-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40906-1

  • Online ISBN: 978-3-319-40908-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics