Skip to main content

Salivary Gland Secretions of Phytophagous Arthropods

  • Chapter
  • First Online:
Book cover Extracellular Composite Matrices in Arthropods

Abstract

Thousands of arthropod species use plants as their main food source. Plants in turn are not completely passive towards arthropod herbivory. Arthropod saliva constitutes an important point of contact which initiates phytophagy and mediates chemical communication. Here we present a summary of those communications studying the constituents of arthropod saliva and their effect on plants. Particular attention has been dedicated to those reports identifying salivary gland genes and proteins in their entirety (transcriptomes and proteomes). The anatomy of salivary glands is highly variable and much of its complexity remains unstudied in various groups of phytophagous arthropods. Some important factors dictating the function of saliva in herbivory are the feeding strategy used by the arthropod, the developmental stage of the animal and the ecological niche in question. The function of many salivary components, such as the chemosensory proteins identified in arthropods, is still largely unknown. We consider the use of heterologous expression of these genes, chemoinformatic, molecular modeling and immunohistochemical studies to be of substantial importance for the elucidation of the functions of these genes as well as the functions of many other unknown proteins in arthropod systems. Additionally, the role of hemolymph proteins such as apolipophorins and storage proteins in saliva is unclear and therefore attention must be devoted to the understanding of protein movement in the arthropod body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akai H, Hakim RS, Kristensen NP (2003) Labial glands, silk and saliva. Handb Zool 4:377–388

    Google Scholar 

  • Alborn HT, Hansen TV, Jones TH, Bennett DC, Tumlinson JH, Schmelz EA, Teal PEA (2007) Disulfooxy fatty acids from the American bird grasshopper Schistocerca Americana, elicitors of plant volatiles. Proc Natl Acad Sci U S A 104:12976–12981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asadi A, Ghadamyari M, Sajedi RH, Sendi JJ, Tabari M (2010) Biochemical characterization of midgut, salivary glands and haemolymph α-amylases of Naranga aenescens. B Insectol 63:175–181

    Google Scholar 

  • Backus EA, Andrews KB, Shugart HJ, Greve LC, Labavitch JM, Alhaddad H (2012) Salivary enzymes are injected into xylem by the glassy-winged sharpshooter, a vector of Xylella fastidiosa. J Insect Physiol 58:949–959

    Article  CAS  PubMed  Google Scholar 

  • Barbosa AEAD, Albuquerque EVS, Silva MCM, Souza DSL, Oliviera-Neto OB, Valencia A, Rocha TL, Grossi-de-Sa MF (2010) α-Amylase inhibitor-1-gene from Phaseolus vulgaris expressed in Coffea arabica plants inhibits α-amylases from the coffee berry borer pest. BMC Biotechnol 10:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benedetti M, Pontiggia D, Raggi S, Cheng Z, Scaloni F, Ferrari S, Ausubel FM, Cervone F, De Lorenzo G (2015) Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns. Proc Natl Acad Sci U S A 112:5533–5538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergey DR, Orozco-Cardenas M, de Moura DS, Ryan CA (1999) A wound- and systemin-inducible polygalacturonase in tomato leaves. Proc Natl Acad Sci U S A 96:1756–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bos JIB, Prince D, Pitino M, Maffei ME, Win J, Hogenhout SA (2010) A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLoS Genet 6(11)

    Google Scholar 

  • Brusca R (1997) Isopoda. Version 06 August 1997. http://tolweb.org/Isopoda/6320/1997.08.06. In: The Tree of Life Web Project, http://tolweb.org/

  • Burton RL, Starks KJ, Sauer JR (1976) β-fructosidase activity in silk glands of Heliothis zea. J Insect Physiol 22:1045–1048

    Article  CAS  Google Scholar 

  • Calvo E, Pham VM, Ribeiro JMC (2008) An insight into the sialotranscriptome of the non-blood feeding Toxorhynchites amboinensis mosquito. Insect Biochem Mol Biol 38:499–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campanacci V, Lartigue A, Hallberg BM, Jones TA, Giudici-Orticoni MT, Tegoni M, Cambillau C (2003) Moth chemosensory protein exhibits drastic conformational changes and cooperativity on ligand binding. Proc Natl Acad Sci U S A 100:5069–5074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll MJ, Schmelz EA, Teal PEA (2008) The attraction of Spodoptera frugiperda neonates to cowpea seedlings is mediated by volatiles induced by conspecific herbivory and the elicitor inceptin. J Chem Ecol 34:291–300

    Article  CAS  PubMed  Google Scholar 

  • Celorio-Mancera MP, Powell AL, Allen ML, Ahmadi H, Salemi MR, Phinney BS, Shackel KA, Greve LC, Teuber LR, Labavitch JM (2008) Polygalacturonase causes lygus-like damage on plants: cloning and identification of western tarnished plant bug (Lygus hesperus) polygalacturonases secreted during feeding. Arthropod Plant Interact 2:215–225

    Article  Google Scholar 

  • Celorio-Mancera MP, Greve LC, Teuber LR, Labavitch JM (2009) Identification of endo- and exo-polygalacturonase activity in Lygus hesperus (Knight) salivary glands. Arch Insect Biochem Physiol 70:122–135

    Article  CAS  Google Scholar 

  • Celorio-Mancera MP, Courtiade J, Muck A, Heckel DG, Musser RO, Vogel H (2011) Sialome of a generalist lepidopteran herbivore: identification of transcripts and proteins from Helicoverpa armigera labial salivary glands. PLoS One 6:e26676

    Google Scholar 

  • Celorio-Mancera MP, Sundmalm SM, Vogel H, Rutishauser D, Ytterberg AJ, Zubarev RA, Janz N (2012) Chemosensory proteins, major salivary factors in caterpillar mandibular glands. Insect Biochem Mol Biol 42:796–805

    Article  CAS  Google Scholar 

  • Celorio-Mancera MP, Ytterberg AJ, Rutishauser D, Janz N, Zubarev RA (2015) Effect of host plant and immune challenge on the levels of chemosensory and odorant-binding proteins in caterpillar salivary glands. Insect Biochem Mol Biol 61:34–45

    Article  CAS  Google Scholar 

  • Cervone F, Hahn M, De Lorenzo G, Darvill A, Albersheim P (1989) Host-pathogen interactions. XXXIII. A plant protein converts a fungal pathogenesis factor into an elicitor of defense responses. Plant Physiol 90:542–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman RF (1995) Mechanics of food handling by chewing insects. In: Chapman RF, de Boer G (eds) Regulatory mechanisms in insect feeding. Chapman and Hall, New York, pp 3–31

    Chapter  Google Scholar 

  • Chaudhary R, Atamian HS, Shen ZX, Briggs SP, Kaloshian I (2015) Potato aphid salivary proteome: enhanced salivation using resorcinol and identification of aphid phosphoproteins. J Proteome Res 14:1762–1778

    Article  CAS  PubMed  Google Scholar 

  • Chen SA, Yang PC, Jiang F, Wei YY, Ma ZY, Kang L (2010) De novo analysis of transcriptome dynamics in the migratory locust during the development of phase traits. PLos One 5:e15633

    Google Scholar 

  • Christoffersen ML, de Assis JE (2015) The crustacea volume 5 part A. In: Vaupel Klein C, Charmantier-Daures M, Schram F (eds) Treatise on zoology – anatomy taxonomy biology. Brill, Leiden, pp 5–75

    Chapter  Google Scholar 

  • Coleman AD, Wouters RHM, Mugford ST, Hogenhout SA (2015) Persistence and transgenerational effect of plant-mediated RNAi in aphids. J Exp Bot 66:541–548

    Article  CAS  PubMed  Google Scholar 

  • Cragg SM (2003) Marine wood boring arthropods: ecology, functional anatomy, and control measures. In: Goodell B, Nicholas DD, Schultz TP (eds) Wood deterioration and preservation: advances in our changing world. American Chemical Society, Washington, pp 272–286

    Chapter  Google Scholar 

  • Crozier A, Kamiya Y, Bishop G, Yokota T (2000) Biosynthesis of hormones and elicitor molecules. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 915–919

    Google Scholar 

  • de Figueroa JMT, Trenzado CE, Lopez-Rodriguez MJ, Sanz A (2011) Digestive enzyme activity of two stonefly species (Insecta, Plecoptera) and their feeding habits. Comp Biochem Physiol A 160:426–430

    Article  CAS  Google Scholar 

  • De Lillo E, Monfreda R (2004) ‘Salivary secretions’ of eriophyoids (Acari: Eriophyoidea): first results of an experimental model. Exp Appl Acarol 34:291–306

    PubMed  Google Scholar 

  • de Sousa CM, Fontanetti CS (2012) Structure and function of the foregut and salivary glands of the synanthropic diplopod Urostreptus atrobrunneus (Spirostreptidae). Anim Biol 62:493–504

    Article  Google Scholar 

  • De Vos M, Jander G (2009) Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. Plant Cell Environ 32:1548–1560

    Article  PubMed  CAS  Google Scholar 

  • Dhar R, Kumar N (2003) Role of mosquito salivary glands. Curr Sci 85:1308–1313

    Google Scholar 

  • Diezel C, von Dahl CC, Gaquerel E, Baldwin IT (2009) Different lepidopteran elicitors account for cross-talk in herbivory-induced phytohormone signaling. Plant Physiol 150:1576–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • do Amaral JB, Machado-Santelli GM (2008) Salivary system in leaf-cutting ants (Atta sexdens rubropilosa Forel, 1908) castes: a confocal study. Micron 39:1222–1227

    Article  PubMed  Google Scholar 

  • Dobson HEM, Peng YS (1997) Digestion of pollen components by larvae of the flower-specialist bee Chelostoma florisomne (Hymenoptera: Megachilidae). J Insect Physiol 43:89–100

    Article  CAS  PubMed  Google Scholar 

  • D’Ovidio R, Raiola A, Capodicasa C, Devoto A, Pontiggia D, Roberti S, Galletti R, Conti E, O’Sullivan D, De Lorenzo G (2004) Characterization of the complex locus of bean encoding polygalacturonase-inhibiting proteins reveals subfunctionalization for defense against fungi and insects. Plant Physiol 135:2424–2435

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgerly JS, Rooks EC (2004) Lichens, sun, and fire: a search for an embiid-environment connection in Australia (Order Embiidina : Australembiidae and Notoligotomidae). Environ Entomol 33:907–920

    Article  Google Scholar 

  • Ehrlich P, Raven P (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • El-Hifnawi E (1974) Salivary-glands of Diplopoda. 3. Anatomy and ultrastructure of diverting system. Z Morphol Tiere 77:221–233

    Article  Google Scholar 

  • El-Hifnawi E, Seifert G (1973) Salivary-glands of diplopoda. 1. Topography and histology of salivary-glands in Polyxenus lagurus, Craspedosoma rawlinsii and Schizophyllum sabulosum. Z Morphol Tiere 74:323–348

    Article  Google Scholar 

  • Elias-Santos D, Fialho MDQ, Vitorino R, Oliveira LL, Zanuncio JC, Serrao JE (2013) Proteome of the head and thorax salivary glands in the stingless bee Melipona quadrifasciata anthidioides. Apidologie 44:684–698

    Article  CAS  Google Scholar 

  • Elzinga DA, De Vos M, Jander G (2014) Suppression of plant defenses by a Myzus persicae (Green Peach Aphid) salivary effector protein. Mol Plant Microbe In 27:747–756

    Article  CAS  Google Scholar 

  • Fabres A, da Silva JDM, Fernandes KVS, Xavier J, Rezende GL, Oliveira AEA (2014) Comparative performance of the red flour beetle Tribolium castaneum (Coleoptera: Tenebrionidae) on different plant diets. J Pest Sci 87:495–506

    Google Scholar 

  • Felton GW, Tumlinson JH (2008) Plant-insect dialogs: complex interactions at the plant-insect interface. Curr Opin Plant Biol 11:457–463

    Article  CAS  PubMed  Google Scholar 

  • Felton GW, Chung SH, Gloria M, Hernandez E, Louis J, Peiffer M, Tian DL (2014) Herbivore oral secretions are the first line of protection against plant-induced defences. Annu Plant Rev 47:37–76

    Article  CAS  Google Scholar 

  • Fornoff F, Gross EM (2014) Induced defense mechanisms in an aquatic angiosperm to insect herbivory. Oecologia 175:173–185

    Article  PubMed  Google Scholar 

  • Freitak D, Wheat CW, Heckel DG, Vogel H (2007) Immune system responses and fitness costs associated with consumption of bacteria in larvae of Trichoplusia ni. BMC Biol 5:56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giuliano-Perez D, Fontanetti C (2011) Assessment of the toxic potential of sewage sludge in the midgut of the diplopod Rhinocricus padbergi. Water Air Soil Poll 218:437–444

    Article  CAS  Google Scholar 

  • Grbić M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P, Grbić V, Osborne EJ, Dermauw W, Ngoc PCT, Ortego F, Hernández-Crespo P, Diaz I, Martinez M, Navajas M, Sucena E, Magalhães S, Nagy L, Pace RM, Djuranović S, Smagghe G, Iga M, Christiaens O, Veenstra JA, Ewer J, Villalobos RM, Hutter JL, Hudson SD, Velez M, Yi SV, Zeng J, Pires-Da Silva A, Roch F, Cazaux M, Navarro M, Zhurov V, Acevedo G, Bjelica A, Fawcett JA, Bonnet E, Martens C, Baele G, Wissler L, Sanchez-Rodriguez A, Tirry L, Blais C, Demeestere K, Henz SR, Gregory TR, Mathieu J, Verdon L, Farinelli L, Schmutz J, Lindquist E, Feyereisen R, Van De Peer Y (2011) The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature 479:487–492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guiguet A, Dubreuil G, Harris MO, Appel HM, Schultz JC, Pereira MH, Giron D (2016) Shared weapons of blood- and plant-feeding insects: surprising commonalities for manipulating hosts. J Insect Physiol 84:4–21

    Article  CAS  PubMed  Google Scholar 

  • Habibi J, Backus EA, Coudron TA, Brandt SL (2001) Effect of different host substrates on hemipteran salivary protein profiles. Entomol Exp Appl 98:369–375

    Article  CAS  Google Scholar 

  • Hammond-Kosack K, Jones JDG (2000) Responses to plant pathogens. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry & molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1135–1136

    Google Scholar 

  • Harpel D, Cullen DA, Ott SR, Jiggins CD, Walters JR (2015) Pollen feeding proteomics: salivary proteins of the passion flower butterfly, Heliconius melpomene. Insect Biochem Mol Biol 63:7–13

    Article  CAS  PubMed  Google Scholar 

  • Hattori M, Komatsu S, Noda H, Matsumoto Y (2015) Proteome analysis of watery saliva secreted by green rice leafhopper, Nephotettix cincticeps. PLoS One 10:e0123671

    Google Scholar 

  • Hessler RR, Elofsson R (2013) The crustacea volume 4 part A. In: Vaupel Klein C, Charmantier-Daures M, Schram F (eds) Treatise on zoology – anatomy, taxonomy, biology. Brill, Leiden, pp 91–97

    Google Scholar 

  • Hilken G, Rosenberg J (2006) Ultrastructural investigation of a salivary gland in a centipede: structure and origin of the maxilla I-gland of Scutigera coleoptrata (Chilopoda, Notostigmophora). J Morphol 267:375–381

    Article  PubMed  Google Scholar 

  • Hirayama C, Konno K, Wasano N, Nakamura M (2007) Differential effects of sugar-mimic alkaloids in mulberry latex on sugar metabolism and disaccharidases of Eri and domesticated silkworms: enzymatic adaptation of Bombyx mori to mulberry defense. Insect Biochem Mol Biol 37:1348–1358

    Article  CAS  PubMed  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Howe GA, Lightner J, Browse J, Ryan CA (1996) An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell 8:2067–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iovinella I, Dani FR, Niccolini A, Sagona S, Michelucci E, Gazzano A, Turillazzi S, Felicioli A, Pelosi P (2011) Differential expression of odorant-binding proteins in the mandibular glands of the honey bee according to caste and age. J Proteome Res 10:3439–3449

    Article  CAS  PubMed  Google Scholar 

  • Iovinella I, Bozza F, Caputo B, Della Torre A, Pelosi P (2013) Ligand-binding study of Anopheles gambiae chemosensory proteins. Chem Senses 38:409–419

    Article  CAS  PubMed  Google Scholar 

  • James AA (2003) Blocking malaria parasite invasion of mosquito salivary glands. J Exp Biol 206:3817–3821

    Article  PubMed  Google Scholar 

  • Ji R, Yu HX, Fu Q, Chen HD, Ye WF, Li SH, Lou YG (2013) Comparative transcriptome analysis of salivary glands of two populations of rice brown planthopper, Nilaparvata lugens, that differ in virulence. PLoS One 8(11)

    Google Scholar 

  • Kim N, Choo YM, Lee KS, Hong SJ, Seol KY, Je YH, Sohn HD, Jin BR (2008) Molecular cloning and characterization of a glycosyl hydrolase family 9 cellulase distributed throughout the digestive tract of the cricket Teleogryllus emma. Comp Biochem Physiol B 150:368–376

    Article  PubMed  CAS  Google Scholar 

  • Kirsch R, Gramzow L, Theißen G, Siegfried BD, ffrench-Constant RH, Heckel DG, Pauchet Y (2014) Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: key events in the evolution of herbivory in beetles. Insect Biochem Mol Biol 52:33–50

    Article  CAS  PubMed  Google Scholar 

  • Koiwa H, Bressan RA, Hasegawa PM (1997) Regulation of protease inhibitors and plant defense. Trends Plant Sci 2:379–384

    Article  Google Scholar 

  • Kostanjšek R, Štrus J, Avguštin G (2002) Genetic diversity of bacteria associated with the hindgut of the terrestrial crustacean Porcellio scaber (Crustacea: Isopoda). FEMS Microbiol Ecol 40:171–179

    Article  PubMed  Google Scholar 

  • Krenn HW, Plant JD, Szucsich NU (2005) Mouthparts of flower-visiting insects. Arthropod Struct Dev 34:1–40

    Article  Google Scholar 

  • Liu F, Cui LW, Cox-Foster D, Felton GW (2004) Characterization of a salivary lysozyme in larval Helicoverpa zea. J Chem Ecol 30:2439–2457

    Article  CAS  PubMed  Google Scholar 

  • López-Rodríguez MJ, Trenzado CE, Tierno de Figueroa JM, Sanz A (2012) Digestive enzyme activity and trophic behavior in two predator aquatic insects (Plecoptera, Perlidae). A comparative study. Comp Biochem Physiol A 162:31–35

    Article  CAS  Google Scholar 

  • Lourenĉo AP, Martins JR, Bitondi MMG, Simões ZLP (2009) Trade-off between immune stimulation and expression of storage protein genes. Arch Insect Biochem Physiol 71:70–87

    Article  PubMed  CAS  Google Scholar 

  • Ma N, Liu SY, Hua BZ (2011) Morphological diversity of male salivary glands in Panorpidae (Mecoptera). Eur J Entomol 108:493–499

    Article  Google Scholar 

  • Macedo MLR, Freire MDM (2011) Insect digestive enzymes as a target for pest control. ISJ-Invertebrate Survival Journal 8:190–198

    Google Scholar 

  • Macedo MLR, Diz Filho EBS, Freire MCM, Oliva MLV, Sumikawa JT, Toyama MH, Marangoni S (2011) A trypsin inhibitor from Sapindus saponaria L. seeds: purification, characterization, and activity towards pest insect digestive enzyme. Protein J 30:9–19

    Article  CAS  PubMed  Google Scholar 

  • Maharaj PD, Widen SG, Huang J, Wood TG, Thangamani S (2015) Discovery of mosquito saliva microRNAs during CHIKV Infection. PLoS Neglect Trop D 9:19

    Article  Google Scholar 

  • Mall SB, Singh AR, Dixit A (1978) Digestive enzymes of mature larva of Atteva fabriciella (Swed) (Lepidoptera, Yponomeutidae). J Anim Morphol Physiol 25:86–92

    CAS  Google Scholar 

  • Menta C, Garcia-Montero LG, Pinto S, Conti FD, Baroni G, Maresi M (2014) Does the natural microcosm created by Tuber aestivum affect soil microarthropods? A new hypothesis based on Collembola in truffle culture. Appl Soil Ecol 84:31–37

    Article  Google Scholar 

  • Mika N, Zorn H, Ruhl M (2013) Insect-derived enzymes: a treasure for industrial biotechnology and food biotechnology. In: Vilcinskas A (ed) Yellow biotechnology Ii: insect biotechnology in plant protection and industry. Springer, Berlin, pp 1–17

    Chapter  Google Scholar 

  • Mosbah A, Campanacci V, Lartigue A, Tegoni M, Cambillau C, Darbon H (2003) Solution structure of a chemosensory protein from the moth Mamestra brassicae. Biochem J 369:39–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musser RO, Kwon HS, Williams SA, White CJ, Romano MA, Holt SM, Bradbury S, Brown JK, Felton GW (2005) Evidence that caterpillar labial saliva suppresses infectivity of potential bacterial pathogens. Arch Insect Biochem Physiol 58:138–144

    Article  CAS  PubMed  Google Scholar 

  • Nunez FS, Crawford CS (1976) Digestive enzymes of the desert millipede Orthoporus ornatus (Girard) (Diplopoda: Spirostreptidae). Comp Biochem Phys A 55:141–145

    Article  CAS  Google Scholar 

  • Parthasarathy R, Gopinathan KP (2005) Comparative analysis of the development of the mandibular salivary glands and the labial silk glands in the mulberry silkworm, Bombyx mori. Gene Expr Patterns 5:323–339

    Article  CAS  PubMed  Google Scholar 

  • Pauchet Y, Heckel DG (2013) The genome of the mustard leaf beetle encodes two active xylanases originally acquired from bacteria through horizontal gene transfer. Proc R Soc Lond B: Biological Sciences 280(1763)

    Google Scholar 

  • Pauchet Y, Kirsch R, Giraud S, Vogel H, Heckel DG (2014) Identification and characterization of plant cell wall degrading enzymes from three glycoside hydrolase families in the cerambycid beetle Apriona japonica. Insect Biochem Mol Biol 49:1–13

    Article  CAS  PubMed  Google Scholar 

  • Pelosi P, Zhou JJ, Ban LP, Calvello M (2006) Soluble proteins in insect chemical communication. Cell Mol Life Sci 63:1658–1676

    Article  CAS  PubMed  Google Scholar 

  • Picimbon JF, Dietrich K, Angeli S, Scaloni A, Krieger J, Breer H, Pelosi P (2000) Purification and molecular cloning of chemosensory proteins from Bombyx mori. Arch Insect Biochem Physiol 44:120–129

    Article  CAS  PubMed  Google Scholar 

  • Powell ALT, van Kan J, ten Have A, Visser J, Greve LC, Bennett AB, Labavitch JM (2000) Transgenic expression of pear PGIP in tomato limits fungal colonization. Mol Plant Microbe In 13:942–950

    Article  CAS  Google Scholar 

  • Rankin SM, Dossat HB, Garcia KM (1997) Effects of diet and mating status upon corpus allatum activity, oocyte growth, and salivary gland size in the ring-legged earwig. Entomol Exp Appl 83:31–40

    Article  Google Scholar 

  • Rayner CJ, Langridge DF (1985) Amino-acids in bee-collected pollens from Australian indigenous and exotic plants. Austral J Exp Agric 25:722–726

    Article  CAS  Google Scholar 

  • Ribeiro JMC (1995) Insect saliva: function, biochemistry and physiology. In: Chapman RF, De Boer G (eds) Regulatory mechanism in insect feeding. Chapman and Hall, New York, pp 74–97

    Chapter  Google Scholar 

  • Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis and oligogalacturonide-related signaling. Phytochemistry 57:929–967

    Article  CAS  PubMed  Google Scholar 

  • Robert CAM, Erb M, Duployer M, Zwahlen C, Doyen GR, Turlings TCJ (2012) Herbivore-induced plant volatiles mediate host selection by a root herbivore. New Phytol 194:1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez PA, Stam R, Warbroek T, Bos JIB (2014) Mp10 and Mp42 from the aphid species Myzus persicae trigger plant defenses in Nicotiana benthamiana through different activities. Mol Plant Microbe In 27:30–39

    Article  CAS  Google Scholar 

  • Rodriguez-Saona C, Crafts-Brandner SJ, Williams L, Pare PW (2002) Lygus hesperus feeding and salivary gland extracts induce volatile emissions in plants. J Chem Ecol 28:1733–1747

    Article  CAS  PubMed  Google Scholar 

  • Royalty RN, Perring TM (1996) Chapter 3.1 nature of damage and its assessment. In: Lindquist EE, Bruin J, Sabelis MW (eds) Eriophyoid mites: their biology, natural enemies and control. Elsevier, Amsterdam, pp 506–508

    Google Scholar 

  • Ryan CA (1990) Protease inhibitors in plants: genes or improving defenses against insects and pathogens. Annu Rev Phytopathol 28:425–449

    Article  CAS  Google Scholar 

  • Sami AJ, Anwar MA, Rehman FU, Shakoori AR (2011) Digestive cellulose hydrolyzing enzyme activity (endo- β-1, 4-D-glucanase) in the gut and salivary glands of blister beetle, Mylabris pustulata. Pak J Zool 43:393–401

    CAS  Google Scholar 

  • Santamaría ME, González-Cabrera J, Martínez M, Grbic V, Castañera P, Díaz L, Ortego F (2015) Digestive proteases in bodies and faeces of the two-spotted spider mite, Tetranychus urticae. J Insect Physiol 78:69–77

    Article  PubMed  CAS  Google Scholar 

  • Schaefer HM, Ruxton GD (2011) Chemical communication by plants about herbivores. In: Plant-animal communication. Oxford University Press, Oxford, pp 187–204

    Google Scholar 

  • Schafer M, Fischer C, Meldau S, Seebald E, Oelmuller R, Baldwin IT (2011) Lipase activity in insect oral secretions mediates defense responses in Arabidopsis. Plant Physiol 156:1520–1534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmelz EA, Engelberth J, Alborn HT, Tumlinson JH, Teal PEA (2009) Phytohormone-based activity mapping of insect herbivore-produced elicitors. Proc Natl Acad Sci U S A 106:653–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect-plant biology. Oxford University Press, Oxford

    Google Scholar 

  • Shackel KA, Celorio-Mancera MP, Ahmadi H, Greve LC, Teuber LR, Backus EA, Labavitch JM (2005) Micro-injection of Lygus salivary gland proteins to simulate feeding damage in alfalfa and cotton flower. Arch Insect Biochem Physiol 58:69–83

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Khan AN, Subrahmanyam S, Raman A, Taylor GS, Fletcher MJ (2014) Salivary proteins of plant-feeding hemipteroids – implication in phytophagy. Bull Entomol Res 104:117–136

    Article  CAS  PubMed  Google Scholar 

  • Sharrock KR, Labavitch JM (1994) Polygalacturonase inhibitors of Bartlett pear fruits: differential effects on Botrytis cinerea polygalacturonase isozymes, and influence on products of fungal hydrolysis of pear cell walls and on ethylene induction in cell culture. Physiol Mol Plant Pathol 45:305–319

    Article  CAS  Google Scholar 

  • Shimomura M, Minami H, Suetsugu Y, Ohyanagi H, Satoh C, Antonio B, Nagamura Y, Kadono-Okuda K, Kajiwara H, Sezutsu H, Nagaraju J, Goldsmith MR, Xia Q, Yamamoto K, Mita K (2009) KAIKObase: an integrated silkworm genome database and data mining tool. BMC Genomics 10:486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srivastava US (1959) The maxillary glands of some Coleoptera. Proc Royal Entomol Soc Lond General Entomol A 34:57–62

    Article  Google Scholar 

  • Stafford-Banks CA, Rotenberg D, Johnson BR, Whitfield AE, Ullman DE (2014) Analysis of the salivary gland transcriptome of Frankliniella occidentalis. PLoS One 9:e94447

    Google Scholar 

  • Stuart JJ, Chen MS, Shukle R, Harris MO (2012) Gall midges (Hessian flies) as plant pathogens. Annu Rev Phytopathol 50:339–357

    Article  CAS  PubMed  Google Scholar 

  • Thorp JH (2009) Chapter 14 – Arthropoda and related groups. In: Resh VH, Cardé RT (eds) Encyclopedia of insects. Academic, San Diego, pp 50–56

    Chapter  Google Scholar 

  • Tong XW, Chen B, Huang LH, Feng QL, Kang L (2015) Proteomic analysis reveals that COP9 signalosome complex subunit 7A (CSN7A) is essential for the phase transition of migratory locust. Sci Rep 5:12542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tree of Life Web Project (1995) Arthropoda. Version 01 January 1995 (temporary). http://tolweb.org/Arthropoda/2469/1995.01.01 in The Tree of Life Web Project. http://tolweb.org/

  • Tsai JR, Lin HC (2014) Functional anatomy and ion regulatory mechanisms of the antennal gland in a semi-terrestrial crab, Ocypode stimpsoni. Biol Open 3:409–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu XB, Wang J, Hao K, Whitman DW, Fan YL, Cao GC, Zhang ZH (2015) Transcriptomic and proteomic analysis of pre-diapause and non-diapause eggs of migratory locust, Locusta migratoria L (Orthoptera: Acridoidea). Sci Rep 5:11402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vegliante F, Hasenfuss I (2012) Morphology and diversity of exocrine glands in lepidopteran larvae. Annu Rev Entomol 57:187–204

    Article  CAS  PubMed  Google Scholar 

  • Vieira FG, Rozas J (2011) Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol Evol 3:476–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker GP (2009) Salivary glands. In: Resh VH, Cardé RT (eds) Encyclopedia of insects. Academic Press, Amsterdam, pp 897–901

    Chapter  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    CAS  PubMed  Google Scholar 

  • Weech MH, Chapleau M, Pan L, Ide C, Bede JC (2008) Caterpillar saliva interferes with induced Arabidopsis thaliana defence responses via the systemic acquired resistance pathway. J Exp Bot 59:2437–2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson EO (1988) The diversity of life. In: de Blij HJ (ed) Earth ‘88: changing geographic perspectives. National Geographic Society, Washington, pp 68–78

    Google Scholar 

  • Wisessing A, Engkagul A, Wongpiyasatid A, Choowongkomon K (2010) Biochemical characterization of the alpha-amylase inhibitor in mungbeans and its application in inhibiting the growth of Callosobruchus maculatus. J Agric Food Chem 58:2131–2137

    Article  CAS  PubMed  Google Scholar 

  • Zhang LL, Xu J, Xiao HJ, Lu YH, Liang GM, Zhang YJ, Wu KM (2015) Molecular characterization and expression profiles of polygalacturonase genes in Apolygus lucorum (Hemiptera: Miridae). PLoS One 10:11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria P. Celorio-Mancera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Celorio-Mancera, M.P., Labavitch, J.M. (2016). Salivary Gland Secretions of Phytophagous Arthropods. In: Cohen, E., Moussian, B. (eds) Extracellular Composite Matrices in Arthropods. Springer, Cham. https://doi.org/10.1007/978-3-319-40740-1_16

Download citation

Publish with us

Policies and ethics