Skip to main content

Abstract

Mathematical models have the potential to be useful to forecast the course of epidemics. In this chapter, a family of logistic patch models are preliminarily evaluated for use in disease modeling and forecasting. Here we also derive the logistic equation in an infectious disease transmission context based on population behavior and used it for forecasting the trajectories of the 2013–2015 Ebola epidemic in West Africa. The logistic model is then extended to include spatial population heterogeneity by using multi-patch models that incorporate migration between patches and logistic growth within each patch. Each model’s ability to forecast epidemic data was assessed by comparing model forecasting error, parameter distributions and parameter confidence intervals as functions of the number of data points used to calibrate the models. The patch models show an improvement over the logistic model in short-term forecasting, but naturally require the estimation of more parameters from limited data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Results from Efron and Tibshirani [10] suggest that accurate results for confidence intervals can be obtained from 1000 bootstrap samples. For standard errors this number is reduced to 200.

References

  1. Agnandji, S.T., Huttner, A., Zinser, M.E., Njuguna, P., Dahlke, C., Fernandes, J.F., Yerly, S., Dayer, J.A., Kraehling, V., Kasonta, R., et al.: Phase 1 trials of rVSV Ebola vaccine in Africa and Europe–preliminary report. N. Engl. J. Med. (2015)

    Google Scholar 

  2. Agusto, F.B., Teboh-Ewungkem, M.I., Gumel, A.B.: Mathematical assessment of the effect of traditional beliefs and customs on the transmission dynamics of the 2014 Ebola outbreaks. BMC Med. 13(1), 96 (2015)

    Article  Google Scholar 

  3. Althaus, C.L.: Estimating the reproduction number of Ebola virus (EBOV) during the 2014 outbreak in West Africa. PLoS currents 6 (2014)

    Google Scholar 

  4. Anderson, R.M., May, R.M.: Infectious Diseases of Humans, vol. 1. Oxford University Press, Oxford (1991)

    Google Scholar 

  5. Bickel, P.J., Doksum, K.A.: Mathematical Statistics: Basic Ideas and Selected Topics, Volume I, vol. 117. CRC Press, Boca Raton (2015)

    MATH  Google Scholar 

  6. Center for Disease Control: Outbreaks Chronology: Ebola Virus Disease. Website (2015). http://www.cdc.gov/vhf/ebola/outbreaks/history/chronology.html

  7. Chowell, G., Nishiura, H.: Transmission dynamics and control of Ebola virus disease (EVD): a review. BMC Med. 12(1), 196 (2014)

    Article  Google Scholar 

  8. Chowell, G., Simonsen, L., Viboud, C., Kuang, Y.: Is West Africa approaching a catastrophic phase or is the 2014 Ebola epidemic slowing down? Different models yield different answers for Liberia. PLoS currents 6 (2014)

    Google Scholar 

  9. Davison, A.C., Hinkley, D.V.: Bootstrap Methods and Their Application, vol. 1. Cambridge university press, Cambridge (1997)

    Book  MATH  Google Scholar 

  10. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. CRC press, Boca Raton (1994)

    MATH  Google Scholar 

  11. Frieden, T.R., Damon, I., Bell, B.P., Kenyon, T., Nichol, S.: Ebola 2014 – new challenges, new global response and responsibility. N. Engl. J. Med. 371(13), 1177–1180 (2014)

    Article  Google Scholar 

  12. Gao, D., Ruan, S.: A multipatch malaria model with logistic growth populations. SIAM J. Appl. Math. 72(3), 819–841 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gomes, M.F., y Piontti, A.P., Rossi, L., Chao, D., Longini, I., Halloran, M.E., Vespignani, A.: Assessing the international spreading risk associated with the 2014 West African Ebola outbreak. PLOS Curr. Outbreaks 1 (2014)

    Google Scholar 

  14. Khan, A., Naveed, M., Dur-e Ahmad, M., Imran, M.: Estimating the basic reproductive ratio for the Ebola outbreak in Liberia and Sierra Leone. Infect. Dis. Poverty 4(1), 13 (2015)

    Google Scholar 

  15. Kiskowski, M.A.: A three-scale network model for the early growth dynamics of 2014 West Africa Ebola epidemic. PLoS Curr. 6 (2014)

    Google Scholar 

  16. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 9(1), 112–147 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Meltzer, M.I., Atkins, C.Y., Santibanez, S., Knust, B., Petersen, B.W., Ervin, E.D., Nichol, S.T., Damon, I.K., Washington, M.L.: Estimating the future number of cases in the Ebola epidemic–Liberia and Sierra Leone, 2014–2015. MMWR Surveill Summ 63(suppl 3), 1–14 (2014)

    Google Scholar 

  18. Merler, S., Ajelli, M., Fumanelli, L., Gomes, M.F., y Piontti, A.P., Rossi, L., Chao, D.L., Longini, I.M., Halloran, M.E., Vespignani, A.: Spatiotemporal spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis. Lancet Infect. Dis. 15(2), 204–211 (2015)

    Google Scholar 

  19. Nielsen, C.F., Kidd, S., Sillah, A., Davis, E., Mermin, J., Kilmarx, P.H.: Improving burial practices and cemetery management during an ebola virus disease epidemic-Sierra Leone, 2014. MMWR Surveill Summ 64, 1–8 (2015)

    Google Scholar 

  20. Pardoe, I., Weisberg, S.: An Introduction to bootstrap methods using Arc. Unpublished Report available at www.stat.umn.edu/arc/bootmethREV.pdf (2001)

  21. Shaman, J., Yang, W., Kandula, S.: Inference and forecast of the current West African Ebola outbreak in Guinea, Sierra Leone and Liberia. PLoS Curr. 6 (2014)

    Google Scholar 

  22. Valdez, L., Rêgo, H.H.A., Stanley, H., Braunstein, L.: Predicting the extinction of Ebola spreading in Liberia due to mitigation strategies. Scientific Reports 5, Article no. 12172

    Google Scholar 

  23. WHO Ebola virus disease in West Africa–the first 9 months of the epidemic and forward projections. N. Engl. J. Med. 371(16), 1481–1495 (2014)

    Google Scholar 

  24. World Health Organization: Ebola Response Roadmap Situation report 03-05-2015 (2015). http://www.who.int/csr/disease/ebola/situation-reports/en/

  25. World Health Organization: Ebola response: What needs to happen in 2015 (2015). http://www.who.int/csr/disease/ebola/one-year-report/response-in-2015/en/

  26. World Health Organization: Ebola vaccines, therapies, and diagnostics (2015). http://www.who.int/medicines/emp_ebola_q_as/en

  27. World Health Organization: Guidance for Safe Handling of Human Remains of Ebola Patients in U.S. Hospitals and Mortuaries (2015). http://www.cdc.gov/vhf/ebola/healthcare-us/hospitals/handling-human-remains.html

  28. Yamin, D., Gertler, S., Ndeffo-Mbah, M.L., Skrip, L.A., Fallah, M., Nyenswah, T.G., Altice, F.L., Galvani, A.P.: Effect of Ebola progression on transmission and control in Liberia. Ann. Intern. Med. 162(1), 11–17 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by NSF grant DMS-1518529.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Kuang .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Forecast and Fitting Error Tables

See Table 5.

Table 5 Fitting errors for all models

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pell, B., Baez, J., Phan, T., Gao, D., Chowell, G., Kuang, Y. (2016). Patch Models of EVD Transmission Dynamics. In: Chowell, G., Hyman, J. (eds) Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-40413-4_10

Download citation

Publish with us

Policies and ethics