Skip to main content

Template-Assisted Approaches for Preparation of Nano-sized Polymer Structures

  • Chapter
  • First Online:
  • 1521 Accesses

Abstract

In this chapter, numerous materials that are used as templates as well as layering methods such as layer-by-layer assembly and surface heterophase polymerization to produce polymeric nanocapsules are reviewed. The specific structure of the polymeric nanocapsules—a hollow core and a polymeric shell—holds promise for a range of applications including catalysis, sensing, microreactors, nanomedicine, artificial organelles, etc. The attention is focused on the biomedical applications of the nanocapsules as well as on the possibilities to control their properties in order to meet key requirements for effective drug-delivery systems such as low toxicity and optional degradability, high loading capacity, triggered release mechanisms, low immunogenicity, and targeting (directing) to designated sites. Additionally, the preparation and utilization of cylindrical polymer brushes as single molecular templates for synthesis of hybrid nanomaterials that may find applications for fabrication of nanoscale devises are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Antipov AA, Shchukin D, Fedutik Y, Petrov AI, Sukhorukov GB, Möhwald H (2003) Carbonate microparticles for hollow polyelectrolyte capsules fabrication. Colloids Surf A 224:175–183

    Article  Google Scholar 

  2. Volodkin DV, Larionova NI, Sukhorukov GB (2004) Protein encapsulation via porous CaCO3 microparticles templating. Biomacromolecules 5:1962–1972

    Article  Google Scholar 

  3. Gaponik N, Radtchenko IL, Gerstenberger MR, Fedutik YA, Sukhorukov GB, Rogach AL (2003) Labeling of biocompatible polymer microcapsules with near-infrared emitting nanocrystals. Nano Lett 3:369–372

    Article  Google Scholar 

  4. Schuetz P, Caruso F (2003) Copper-assisted weak polyelectrolyte multilayer formation on microspheres and subsequent film crosslinking. Adv Funct Mater 13:929–937

    Article  Google Scholar 

  5. Yu AM, Wang Y, Barlow E, Caruso F (2005) Mesoporous silica particles as templates for preparing enzyme-loaded biocompatible microcapsules. Adv Mater 17:1737–1741

    Article  Google Scholar 

  6. Donath E, Sukhorukov GB, Caruso F, Davis SA, Möhwald H (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed 37:2201–2205

    Article  Google Scholar 

  7. Lee D, Rubner MF, Cohen RE (2005) Formation of nanoparticle-loaded microcapsules based on hydrogen-bonded multilayers. Chem Mater 17:1099–1105

    Article  Google Scholar 

  8. Weda P, Trzebicka B, Dworak A, Tsvetanov CB (2008) Thermosensitive nanospheres of low density core—An approach to hollow nanoparticles. Polymer 49:1467–1474

    Article  Google Scholar 

  9. Toncheva N, Tsvetanov C, Rangelov S, Trzebicka B, Dworak A (2013) Hydroxyl endfunctionalized poly(2-isopropyl oxazoline)s used as nano-sized colloidal templates for preparation of hollow polymeric nanocapsules. Polymer 54:5166–5173

    Article  Google Scholar 

  10. Haladjova E, Rangelov S, Tsvetanov Ch, Simon P (2014) Preparation of polymeric nanocapsules via nano-sized poly(methoxydiethyleneglycol methacrylate) colloidal templates. Polymer 55:1621–1627

    Article  Google Scholar 

  11. Tjipto E, Cadwell KD, Quinn JF, Johnston APR, Abbott NL, Caruso F (2006) Tailoring the interfaces between nematic liquid crystal emulsions and aqueous phases via layer-by-layer assembly. Nano Lett 6:2243–2248

    Article  Google Scholar 

  12. Priest C, Quinn A, Postma A, Zelikin AN, Ralston J, Caruso F (2008) Microfluidic polymer multilayer adsorption on liquid crystal droplets for microcapsule synthesis. Lab Chip 8:2182–2187

    Article  Google Scholar 

  13. Szczepanowicz K, Hoel HJ, Szyk-Warszynska L, Bielarinska E, Bouzga AM, Gaudernack G, Simon C, Warszynski P (2010) Formation of biocaompatible nanocapsules with emulsion core and PEGylated shell by polyemectrolyte multilayer adsorption. Langmuir 26:12592–12597

    Article  Google Scholar 

  14. Shchukin DG, Kohler K, Möhwald H, Sukhorukov GB (2005) Gas-filled polyelectrolyte capsules. Angew Chem Int Ed 44:3310–3314

    Article  Google Scholar 

  15. Donath E, Moya S, Neu B, Sukhorukov GB, Georgieva R, Voigt A et al (2002) Hollow polymer shells from biological templates: fabrication and potential applications. Chem Eur J 8:5481–5485

    Article  Google Scholar 

  16. Shenoy DB, Antipov AA, Sukhorukov GB, Möhwald H (2003) Layer-by-layer engineering of biocompatible, decomposable core-shell structures. Biomacromolecules 4:265–272

    Article  Google Scholar 

  17. Sukhorukov GB, Donath E, Davis S, Lichtenfeld H, Caruso F, Popov VI et al (1998) Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design. Polym Adv Technol 9:759–767

    Article  Google Scholar 

  18. Kozlovskaya V, Ok S, Sousa A, Libera M, Sukhishvili SA (2003) Hydrogen-bonded polymer capsules formed by layer-by-layer self-assembly. Macromolecules 36:8590–8592

    Article  Google Scholar 

  19. Such GK, Johnston APR, Caruso F (2011) Engineered hydrogen-bonded polymer multilayers: from assembly to biomedical applications. Chem Soc Rev 40:19–29

    Article  Google Scholar 

  20. Kharlampieva E, Kozlovskaya V, Sukhishvili SA (2009) Layer-by-layer hydrogen-bonded polymer films: from fundamentals to applications. Adv Mater 21:3053–3065

    Article  Google Scholar 

  21. Bergbreiter DE, Liao K-S (2009) Covalent layer-by-layer assembly-an effective, forgiving way to construct functional robust ultrathin films and nanocomposites. Soft Matter 5:23–28

    Article  Google Scholar 

  22. Johnston APR, Read ES, Caruso F (2005) DNA multilayer films on planar and colloidal supports: sequential assembly of like-charged polyelectrolytes. Nano Lett 5:953–956

    Article  Google Scholar 

  23. Johnston APR, Mitomo H, Read ES, Caruso F (2006) Compositional and structural engineering of DNA multilayer films. Langmuir 22:3251–3258

    Article  Google Scholar 

  24. Johnston APR, Lee L, Wang Y, Caruso F (2009) Controlled degradation of DNA capsules with engineered restriction-enzyme cut sites. Small 5:1418–1421

    Article  Google Scholar 

  25. Johnston APR, Caruso F (2007) Exploiting the directionality of DNA: controlled shrinkage of engineered oligonucleotide capsules. Angew Chem Int Ed 46:2677–2680

    Article  Google Scholar 

  26. Johnston APR, Caruso F (2008) Stabilization of DNA multilayer films through oligonucleotide crosslinking. Small 4:612–618

    Article  Google Scholar 

  27. Cavalieri F, Ng SL, Mazzuca C, Jia ZF, Bulmus V, Davis TP et al (2011) Thinmultilayer films and microcapsules containing DNA quadruplex motifs. Small 7:101–111

    Article  Google Scholar 

  28. Serizawa T, Hamada K, Akashi M (2004) Polymerization within a molecular-scale stereoregular template. Nature 429:52–55

    Article  Google Scholar 

  29. Kida T, Mouri M, Akashi M (2006) Fabrication of hollow capsules composed of poly(methyl methacrylate) stereocomplex films. Angew Chem Int Ed 45:7534–7536

    Article  Google Scholar 

  30. Shchepelina O, Drachuk I, Gupta MK, Lin J, Tsukruk VV (2011) Silk-on-silk layer-by-layer microcapsules. Adv Mater 23:4655–4660

    Article  Google Scholar 

  31. Wang ZP, Feng ZQ, Gao CY (2008) Stepwise assembly of the same polyelectrolytes using host-guest interaction to obtain microcapsules with multiresponsive properties. Chem Mater 20:4194–4199

    Article  Google Scholar 

  32. Xiao W, Chen W-H, Zhang J, Li C, Zhuo R-X, Zhang X-Z (2011) Design of a photoswitchable hollow microcapsular drug delivery system by using a supramolecular drugloading approach. J Phys Chem B 115:13796–13802

    Google Scholar 

  33. Li C, Luo G-F, Wang H-Y, Zhang J, Gong Y-H, Cheng S-X et al (2011) Host–guest assembly of pH-responsive degradable microcapsules with controlled drug release behavior. J Phys Chem C 115:17651–17659

    Article  Google Scholar 

  34. Cui J, van Koeverden MP, Müllner M, Kempe K, Caruso F (2014) Emerging methods for the fabrication of polymer capsules. Adv Coll Interface Sci 207:14–31

    Article  Google Scholar 

  35. Caruso F, Caruso RA, Molwald H (1998) Nanoengineering of inorganic and hybrod hollow spheres by colloidal templating. Science 282:1111–1114

    Article  Google Scholar 

  36. Voigt A, Lichtenfeld H, Sukhorukov GB, Zastrow H, Donath E, Baumler H et al (1999) Membrane filtration for microencapsulation and microcappsule fabrication by layer-by-layer polyelectrolyte adsorption. Ind Eng Res 38:4037–4043

    Article  Google Scholar 

  37. Esser-Kahn AP, Odom SA, Sottos NR, White SR, Moore JS (2011) Triggered release from polymer capsules. Macromolecules 44:5539–5553

    Article  Google Scholar 

  38. Johnston APR, Such GK, Caruso F (2010) Triggering release of encapsulated cargo. Angew Chem Int Ed 49:2664–2666

    Article  Google Scholar 

  39. Richardson II, Ejima H, Lorcher SI, Liang K, Senn P, Cui J et al (2013) Preparation of nano- and microcapsules by electrophoretic polymer assembly. Angew Chem Int Ed 52:6455–6458

    Article  Google Scholar 

  40. Del Mercato LL, Ferraro MM, Baldassarre F, Mancarella S, Greco V, Rinaldi R, Leporatti S (2014) Biological applications of LbL multilayer capsules: from drug delivery to sensing. Adv Colloid Interface Sci 207:139–154

    Article  Google Scholar 

  41. Volodkin D, von Klitzing R, Mohwald H (2010) Pure protein micrspheresby calcium carbonate templating. Angew Chem Int Ed 49:9258–9261

    Article  Google Scholar 

  42. Parakhonskiy B, Yashchenok A, Konrad M, Skirtach A (2014) Colloidal micro- and nano-particles as templates for polyelectrolyte multilayer capsules. Adv Colloid Interface Sci 207:253–264

    Article  Google Scholar 

  43. Boyer C, Zasadzinski JA (2007) Multiple lipid compartments slow vesicle contents release in lipases and serum. ACS Nano 1:176–182

    Article  Google Scholar 

  44. Stadler B, Chandrawati R, Price AD, Chong SF, Breheney K, Postma A et al (2009) A microreactor with thousands of subcompartments: enzyme-loaded liposomes within polymer capsules. Angew Chem Int Ed Engl 48:4359–4362

    Article  Google Scholar 

  45. Delcea M, Yashchenok A, Videnova K, Kreft O, Mohwald H, Skirtach AG (2010) Multicompartmental micro- and nanocapsules: hierarchy and applications in biosciences. Macromol Biosci 10:465–474

    Article  Google Scholar 

  46. Chandrawati R, Caruso F (2012) Biomimetic liposome- and polymersome-based multicompartmentalized assemblies. Langmuir 28:13798–13807

    Article  Google Scholar 

  47. Huang X, Voit B (2013) Progress on multi-compartment polymeric capsules. Polym Chem-UK 4:435–443

    Article  Google Scholar 

  48. Sandre O, Moreaux L, Brochard-Wyart F (1999) Dynamics of transient pores in stretched vesicles. Proc Natl Acad Sci USA 96:10591–10596

    Article  Google Scholar 

  49. Xiong R, Soenen SJ, Braeckmans K, Skirtach AG (2013) Towards theranostic multicompartment microcapsules: in-situ diagnostics and laser-induced treatment. Theranostics 3:141–151

    Article  Google Scholar 

  50. Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 103:4930–4934

    Article  Google Scholar 

  51. Muro S, Garnacho C, Champion JA, Leferovich J, Gajewski C, Schuchman EH et al (2008) Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol Ther 16:1450–1458

    Article  Google Scholar 

  52. Shchepelina O, Kozlovskaya V, Kharlampieva E, Mao W, Alexeev A, Tsukruk VV (2010) Anisotropic micro- and nano-capsules. Macromol Rapid Commun 31:2041–2046

    Article  Google Scholar 

  53. Kozlovskaya V, Higgins W, Chen J, Kharlampieva E (2011) Shape switching of hollow layer-by-layer hydrogel microcontainers. Chem Commun (Camb) 47:8352–8354

    Article  Google Scholar 

  54. Kozlovskaya V, Yakovlev S, Libera M, Sukhishvili SA (2005) Surface priming and the selfassembly of hydrogen-bonded multilayer capsules and films. Macromolecules 38:4828–4836

    Article  Google Scholar 

  55. Shchepelina O, Lisunova MO, Drachuk I, Tsukruk VV (2012) Morphology and properties of microcapsules with different core releases. Chem Mater 24:1245–1254

    Article  Google Scholar 

  56. Yashchenok AM, Parakhonskiy BV, Donatan S, Kohler D, Skirtach AG, Möhwald H (2013) Polyelectrolyte multilayer microcapsules templated on spherical, elliptical and square calcium carbonate particles. J Mater Chem B 1:1223–1228

    Article  Google Scholar 

  57. Dierendonck M, De Koker S, De Rycke R, Geest BD (2014) Just spray it—LbL assembly enters a new age. Soft Matter 10:804–807

    Article  Google Scholar 

  58. Haladjova E, Toncheva-Moncheva N, Apostolova M, Trzebicka B, Dworak A, Petrov P, Dimitrov I, Rangelov S, Tsvetanov Ch (2014) Polymeric nanoparticles engineering: from temperature-responsive polymer mesoglobules to gene delivery systems. Biomacromolecules 15:4377–4395

    Article  Google Scholar 

  59. Breitenkamp K, Emrick T (2003) Novel polymer capsules from amphiphilic graft copolymers and cross-metathesis. J Am Chem Soc 125:12070–12071

    Article  Google Scholar 

  60. Roux R, Sallet L, Alcouffe P, Chambert S, Sintes-Zydowicz N, Fleury E et al (2012) Facile and rapid access to glyconanocapsules by CuAAC interfacial polyaddition in miniemulsion conditions. ACS Macro Lett 1:1074–1078

    Article  Google Scholar 

  61. Ye S, Liu Y, Chen S, Liang S, McHale R, Ghasdian N et al (2011) Photoluminescent properties of Prussian blue (PB) nanoshells and polypyrrole (PPy)/PB core/shell nanoparticles prepared via miniemulsion (periphery) polymerization. Chem Commun 47:6831–6833

    Article  Google Scholar 

  62. Li W, Matyjaszewski K, Albrecht K, Möller M (2009) Reactive surfactants for polymeric nanocapsules via interfacially confined miniemulsion ATRP. Macromolecules 42:8228–8233

    Article  Google Scholar 

  63. Li W, Yoon JA, Matyjaszewski K (2010) Dual-reactive surfactant used for synthesis of functional nanocapsules in miniemulsion. J Am Chem Soc 132:7823–7825

    Article  Google Scholar 

  64. Utama RH, Guo Y, Zetterlund PB, Stenzel MH (2012) Synthesis of hollow polymeric nanoparticles for protein delivery via inverse miniemulsion periphery RAFT polymerization. Chem Commun 48:11103–11105

    Article  Google Scholar 

  65. Utama RH, Stenzel MH, Zetterlund PB (2013) Inverse miniemulsion periphery RAFT polymerization: a convenient route to hollow polymeric nanoparticles with an aqueous core. Macromolecules 46:2118–2127

    Article  Google Scholar 

  66. Fu GD, Shang Z, Hong L, Kang ET, Neoh KG (2005) Preparation of cross-linked polystyrene hollow nanospheres via surface-initiated atom transfer radical polymerizations. Macromolecules 38:7867–7871

    Article  Google Scholar 

  67. Huang X, Appelhans D, Formanek P, Simon F, Voit B (2011) Synthesis of well-defined photo-cross-linked polymeric nanocapsules by surface-initiated RAFT polymerization. Macromolecules 44:8351–8360

    Article  Google Scholar 

  68. Achilleos DS, Hatton TA, Vamvakaki M (2012) Light-regulated supramolecular engineering of polymeric nanocapsules. J Am Chem Soc 134:5726–5729

    Article  Google Scholar 

  69. Blomberg S, Ostberg S, Harth E, Bosman AW, Van Horn B, Hawker CJ (2002) Production of crosslinked, hollow nanoparticles by surface-initiated living free-radical polymerization. J Polym Sci, Part A: Polym Phys 40:1309–1320

    Article  Google Scholar 

  70. Huang X, Appelhans D, Formanek P, Simon F, Voit B (2012) Tailored synthesis of intelligent polymer nanocapsules: an investigation of controlled permeability and pH dependent degradability. ACS Nano 6:9718–9726

    Article  Google Scholar 

  71. Goh TK, Guntari SN, Ochs CJ, Blencowe A, Mertz D, Connal LA et al (2011) Nanoengineered films via surface-confined continuous assembly of polymers. Small 7:2863–2867

    Article  Google Scholar 

  72. Wang Y, Price AD, Caruso F (2009) Nanoporous colloids: building blocks for a new generation of structured materials. J Mater Chem 19:6451–6464

    Article  Google Scholar 

  73. Mertz D, Wang Y, Goh TK, Blencowe A, Caruso F (2011) Bromoisobutyramide as an intermolecular surface binder for the preparation of free-standing biopolymer assemblies. Adv Mater 23:5668–5673

    Article  Google Scholar 

  74. Mertz D, Wu H, Wong JS, Cui J, Tan P, Alles R (2012) Ultrathin, bioreposnsive and drug-functionalized protein capsules. J Mater Chem 22:21434–21442

    Article  Google Scholar 

  75. Mertz D, Cui J, Yan Y, Devlin G, Chaubaroux C, Dochter A (2012) Protein capsules assembled via isobutyramide grafts: sequential growth, biofunctionalization, and cellular uptake. ACS Nano 6:7584–7594

    Article  Google Scholar 

  76. Wu Y-L, Li J (2009) Synthesis of supramolecular nanocapsules based on threading of multiple cyclodextrinsover polymers on gold nanoparticles. Angew Chem Int Ed 48:3842–3845

    Article  Google Scholar 

  77. Dam HH, Caruso F (2012) Modular click assembly of degradable capsules using polyrotoxanes. ACS Nano 6:4686–4693

    Article  Google Scholar 

  78. Karamitros CS, Yashchenok AM, Möhwald H, Skirtach AG, Konrad M (2013) Preserving catalytic activity and enhancing biochemical stability of the therapeutic enzyme asparaginase by biocompatible multilayered polyelectrolyte microcapsules. Biomacromolecules 14:4398–4406

    Article  Google Scholar 

  79. Haladjova E, Rangelov S, Tsvetanov Ch, Pispas S (2012) DNA encapsulation via nanotemplates from cationic block copolymer micelles. Soft Matter 8:2884–2889

    Article  Google Scholar 

  80. Wang Y, Yan Y, Cui J, Hosta-Rigau L, Heath JK, Nice EC, Caruso F (2010) Encapsulation of water-insoluble drugs in polymer capsules prepared using mesoporous silica templates for intracellular drug delivery. Adv Mater 22:4293–4297

    Article  Google Scholar 

  81. Cui J, Wang Y, Postma A, Hao J, Hosta-Rigau L, Caruso F (2010) Monodisperse polymer capsules: tailoring size, shell thickness and hydrophobic cargo loading via emulsion templating. Adv Funct Mater 20:1625–1631

    Article  Google Scholar 

  82. Grigoriev DO, Bukreeva T, Mohwald H, Shchuin DG (2008) New method for fabrication of loaded micro- and nanocontainers: emulsion encapsulation by polyelectrolyte layer-by-layer deposition on the liquid core. Langmuir 24:999–1004

    Article  Google Scholar 

  83. Tonq W, She S, Xie L, Gao Ch (2011) High efficient loading and controlled release of low-molecular-weight drugs by combinantion of spontaneous deposition and heat-induced shrinkage of multilayer capsules. Soft Matter 7:8258–8265

    Article  Google Scholar 

  84. Koehler K, Sukhorukov GB (2007) Heat treatment of polyelectrolute multilayer capsules: a versatile method for encapsulation. Adv Funct Mater 17:2053–2061

    Article  Google Scholar 

  85. Hosta-Rigau L, Staedler B, Yan Y, Nice EC, Heath JK, Alberico F, Caruso F (2010) Capsosomes with multilayered subcompartments: assembly and loading with hydrophobic cargo. Adv Funct Mater 20:59–66

    Article  Google Scholar 

  86. Boudou T, Kharkar P, Jing J, Guillot R, Pignot-Paintrand I, Auzely-Velty R, Picart C (2012) Polyelectrolyte multilayer nanoshells with hydrophobic nanodomains for delivery of paclitaxel. J Contr Rel 159:403–412

    Article  Google Scholar 

  87. Imoto T, Kida T, Matsusaki M, Akashi M (2010) Preparation and unique pH-responsive properties of novel biodegradable nanocapsules composed of poly(gamma-glutamic acid) and chitosan as weak polyelectrolytes. Macromol Biosci 10:271–277

    Article  Google Scholar 

  88. Luo GF, Xu XD, Zhang J, Yang J, Gong YH, Lei Q (2012) Encapsulation of an adamantine-doxorubicin prodrug in pH-responsive polysaccharide capsules for controlled release. ACS Appl Mater Interfaces 4:5317–5324

    Article  Google Scholar 

  89. del Meracato LL, Gonazalez E, Abbasi A, Parak WJ, Puntes V (2011) Synthesis and evaluation of gold nanoparticle-modified polyelectrolyte capsules under microwave irradiation for remotely controlled release for cargo. J Mater Chem 21:11468–11471

    Article  Google Scholar 

  90. Park MK, Deng S, Advincula RC (2005) Sustained release control via photo-cross-linking of polyelectrolyte layer-by-layer hollow capsules. Langmuir 21:5272–5277

    Article  Google Scholar 

  91. Munoz Javier A, del Pino P, Bedard MF, Ho D, Skirtach AG, Sukhorukov GB, Plank C, Parak WJ (2008) Photoactivated release of cargo from the cavity of polyelectrolyte capsules to the cytosol of cells. Langmuir 24:12517–12520

    Article  Google Scholar 

  92. Carregal-Romero S, Ochs M, Rivera-Gil P, Ganas C, Pavlov AM, Sukhorukov GB, Parak WJ (2012) NIR-light triggered delivery of macromolecules into the cytosol. J Contr Rel 159:120–127

    Article  Google Scholar 

  93. Ochs M, Carregal-Romero S, Rejman J, Breackmans K, De Smedt SC, Parak WJ (2013) Light-addressable capsules as caged compound matrix fro controlled triggering of cytosolic reactions. Angew Chem Int Ed 52:695–699

    Article  Google Scholar 

  94. Itoh Y, Matsusaki M, Kida T, Akashi M (2008) Locally controlled release of basic fibroblast growth factor from multilayered capsules. Biomacromolecules 9:2202–2206

    Article  Google Scholar 

  95. Cui D, Jing J, Boudou T, Pignot-Paintrand I, De Koker S, De Geest BG, Picart C, Auzely-Velty R (2011) Hydrophobic shell loading of biopolyelectrolyte capsules. Adv Mater 23:H200–H204

    Article  Google Scholar 

  96. Kamphius MM, Johnston AP, Such GK, Dam HH, Evans RA, Scott AM et al (2010) Targeting of cancer cells using click-functionalized polymer capsules. J Am Chem Soc 132:15881–15883

    Article  Google Scholar 

  97. Cortez C, Tomaskovic-Crook E, Johnston APR, Radt B, Cody SH, Scott AM, Nice EC, Heath JK, Caruso F (2006) Targeting and uptake of multilayered particles to colorectal cancer cells. Adv Mater 18:1998–2003

    Article  Google Scholar 

  98. Qi W, Wang A, Yang Y, Du M, Bouchu MN, Boulanger P, Li J (2010) The lectin binding and targetable cellular uptake of lipid coated polysaccharide microcapsules. J Mater Chem 20:2121–2127

    Article  Google Scholar 

  99. Zhang F, Liu I, Wu Q, Lin X (2009) Design and in vitro biodegradation of novel hepatocyte-targetable (galactose polycation/hemoglobin) multilayers and microcapsules. Macromol Chem Phys 210:1052–1060

    Article  Google Scholar 

  100. Zhang F, Wu Q, Chen Z, Li X, Jiang X, Lin X (2006) Bioactive galactose-branched polyelectrolyte multilayers and microcapsules: self-assembly, characterization, and biospecific lectin adsorption. Langmuir 22:8458–8464

    Article  Google Scholar 

  101. Zhang F, Wu Q, Chen Z, Zhang M, Lin X (2008) Hepatic-targeting microcapsules construction by self-assembly of bioactive galactose-branched polyelectrolyte for controlled drug release system. J Colloid Int Sci 317:477–484

    Article  Google Scholar 

  102. Lee H, Pietrasik J, Sheiko SS, Matyjaszewski K (2010) Stimuli-responsive molecular brushes. Prog Polym Sci 35:24–44

    Article  Google Scholar 

  103. Yuan J, Müller AHE, Matyjaszewski K, Sheiko SS (2012) Molecular brushes. In: Müller AHE, Wooley KL (eds) Polymer science: a comprehensive reference, vol 6. Macromolecular architectures and soft nano-objects. Elsevier, Amsterdam

    Google Scholar 

  104. Zhang M, Müller AHE (2005) Cylindrical polymer brushes. J Polym Sci A Polym Chem 43:3461–3481

    Article  Google Scholar 

  105. Sheiko SS, Sumerlin B, Matyjaszewski K (2008) Cylindrical molecular brushes: synthesis, characterization, and properties. Prog Polym Sci 33:759–785

    Article  Google Scholar 

  106. Cheng G, Böker A, Zhang M, Krausch G, Müller AHE (2001) Amphiphilic cylindrical core-shell brushes via a “grafting from” process using ATRP. Macromolecules 34:6883–6888

    Article  Google Scholar 

  107. Zhang M, Drechsler M, Müller AHE (2004) Template-controlled synthesis of wire-like cadmium sulfide nanoparticle assemblies within core-shell cylindrical polymer brushes. Chem Mater 16:537–543

    Article  Google Scholar 

  108. Zhang M, Estournes C, Bietsch W, Müller AHE (2004) Superparamagnetic hybrid nanocylinders. Adv Funct Mater 14:871–882

    Article  Google Scholar 

  109. Yuan J, Drechsler M, Xu Y, Zhang M, Müller AHE (2008) Cadmium selenide nanowires within core-shell cylindrical polymer brushes: synthesis, characterization and the double-loading process. Polymer 49:1547–1554

    Article  Google Scholar 

  110. Müllner M, Lunkenbein T, Schieder M, Gröschel AH, Miyajima N, Förtsch M, Breu J, Caruso F, Müller AHE (2012) Template-directed mild synthesis of anatase hybrid nanotubes within cylindrical core-shell-corona polymer brushes. Macromolecules 45:6981–6988

    Article  Google Scholar 

  111. Yuan J, Xu Y, Walther A, Bolisetty S, Schumacher M, Schmalz H, Ballauff M, Muller AHE (2008) Water-soluble organo-silica hybrid nanowires. Nat Mater 7:718–722

    Article  Google Scholar 

  112. Müllner M, Yuan J, Weiss S, Walther A, Förtsch M, Drechsler M, Müller AHE (2010) Water-soluble organo-silica hybrid nanotubes template by cylindrical polymer brushes. J Am Chem Soc 132:16587–16592

    Article  Google Scholar 

  113. Yan X, Liu F, Li Z, Liu G (2001) Poly(acrylic acid)-lined nanotubes of poly(butyl methacrylate)-block-poly(2-cinnamoyloxyethyl methacrylate). Macromolecules 34:9112–9116

    Article  Google Scholar 

  114. Best JP, Yan Y, Caruso F (2012) The role of particle geometry and mechanics in the biological domain. Adv Healthc Mater 1:35–47

    Article  Google Scholar 

  115. Shimoni O, Yan Y, Wang Y, Caruso F (2012) Shape-dependent cellular processing of polyelectrolyte capsules. ACS Nano 7:522–530

    Article  Google Scholar 

Download references

Acknowledgments

The authors express gratitude to the EC project POLINNOVA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Rangelov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rangelov, S., Petrov, P. (2016). Template-Assisted Approaches for Preparation of Nano-sized Polymer Structures. In: Fakirov, S. (eds) Nano-size Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-39715-3_13

Download citation

Publish with us

Policies and ethics