Skip to main content

Robust Numerical Schemes for an Efficient Implementation of Tangent Matrices: Application to Hyperelasticity, Inelastic Standard Dissipative Materials and Thermo-Mechanics at Finite Strains

  • Chapter
  • First Online:
  • 913 Accesses

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 81))

Abstract

In this contribution robust numerical schemes for an efficient implementation of tangent matrices in finite strain problems are presented and their performance is investigated through the analysis of hyperelastic materials, inelastic standard dissipative materials in the context of incremental variational formulations, and thermo-mechanics. The schemes are based on highly accurate and robust numerical differentiation approaches which use non-real numbers, i.e., complex variables and hyper-dual numbers. The main advantage of these approaches are that, contrary to the classical finite difference scheme, no round-off errors in the perturbations due to floating-point arithmetics exist within the calculation of the tangent matrices. This results in a method which is independent of perturbation values (in case of complex step derivative approximations if sufficiently small perturbations are chosen). An efficient algorithmic treatment is presented which enables a straightforward implementation of the method in any standard finite-element program. By means of hyperelastic, finite strain elastoplastic, and thermo-elastoplastic boundary value problems, the performance of the proposed approaches is analyzed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Balzani, D., Neff, P., Schröder, J., & Holzapfel, G. A. (2006). A polyconvex framework for soft biological tissues. Adjustment to experimental data. International Journal of Solids and Structures, 43(20), 6052–6070.

    Article  MathSciNet  MATH  Google Scholar 

  2. Balzani, D., Scheunemann, L., Brands, D., & Schröder, J. (2014). Construction of two- and three-dimensional statistically similar RVEs for coupled micro-macro simulations. Computational Mechanics, 54, 1269–1284.

    Google Scholar 

  3. Balzani, D., Gandhi, A., Tanaka, M., & Schröder, J. (2015). Numerical calculation of thermo-mechanical problems at large strains based on robust approximations of tangent stiffness matrices. Computational Mechanics, 55, 861–871.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bleier, N., & Mosler, J. (2012). Efficient variational constitutive updates by means of a novel parameterization of the flow rule. International Journal for Numerical Methods in Engineering, 89, 1120–1143.

    Article  MathSciNet  MATH  Google Scholar 

  5. Clifford, W. K. (1873). Preliminary sketch of biquaternions. Proceedings of the London Mathematical Society, 4(64), 381–395.

    MathSciNet  MATH  Google Scholar 

  6. Fike, J. A. (2013). Multi-objective optimization using hyper-dual numbers. Ph.D. thesis, Stanford university.

    Google Scholar 

  7. Fike, J. A., & Alonso, J. J. (2011). The development of hyper-dual numbers for exact second-derivative calculations. In 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.

    Google Scholar 

  8. Golanski, D., Terada, K., & Kikuchi, N. (1997). Macro and micro scale modeling of thermal residual stresses in metal matrix composite surface layers by the homogenization method. Computational Mechanics, 19, 188–201.

    Article  Google Scholar 

  9. Kim, S., Ryu, J., & Cho, M. (2011). Numerically generated tangent stiffness matrices using the complex variable derivative method for nonlinear structural analysis. Computer Methods in Applied Mechanics and Engineering, 200, 403–413.

    Article  MathSciNet  MATH  Google Scholar 

  10. Kiran, R., & Khandelwal, K. (2015). Automatic implementation of finite strain anisotropic hyperelastic models using hyper-dual numbers. Computational Mechanics, 55, 229–248.

    Google Scholar 

  11. Kiran, R., & Khandelwal, K. (2014). Complex step derivative approximation for numerical evaluation of tangent moduli. Computers and Structures, 140, 1–13.

    Article  Google Scholar 

  12. Klinkel, S. (2000). Theorie und Numerik eines Volumen-Schalen-Elementes bei finiten elastischen und plastischen Verzerrungen. Dissertation thesis, Institut für Baustatik, Universität Karlsruhe.

    Google Scholar 

  13. Lai, K.-L., & Crassidis, J. L. (2008). Extensions of the first and second complex-step derivative approximations. Journal of Computational and Applied Mathematics, 219, 276–293.

    Article  MathSciNet  MATH  Google Scholar 

  14. Lyness, J. N. (1968). Differentiation formulas for analytic functions. Mathematics of Computation, 352–362.

    Google Scholar 

  15. Martins, J. R. R. A., & Hwang, J. T. (2013). Review and unification of discrete methods for computing derivatives of single- and multi-disciplinary computational models. AIAA Journal, 51(11), 2582–2599.

    Article  Google Scholar 

  16. Martins, J. R. R. A., Sturdza, P., & Alonso, J. J. (2003). The complex-step derivative approximation. ACM Transactions on Mathematical Software, 29, 245–262.

    Article  MathSciNet  MATH  Google Scholar 

  17. Miehe, C. (1996). Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity. Computer Methods in Applied Mechanics and Engineering, 134, 223–240.

    Article  MathSciNet  MATH  Google Scholar 

  18. Miehe, C., & Lambrecht, M. (2003). Analysis of microstructure development in shearbands by energy relaxation of incremental stress potentials: Large-strain theory for standard dissipative solids. International Journal for Numerical Methods in Engineering, 58, 1–41.

    Article  MathSciNet  MATH  Google Scholar 

  19. Miehe, C., Schotte, J., & Schröder, J. (1999). Computational micro-macro-transitions and overall moduli in the analysis of polycrystals at large strains. Computational Materials Science, 16, 372–382.

    Article  Google Scholar 

  20. Mosler, J., & Bruhns, O. T. (2009). Towards variational constitutive updates for non-associative plasticity models at finite strain: Models based on a volumetric-deviatoric split. International Journal of Solids and Structures, 46, 1676–1684.

    Article  MathSciNet  MATH  Google Scholar 

  21. Mosler, J., & Bruhns, O. T. (2010). On the implementation of rate-independent standard dissipative solids at finite strain—variational constitutive updates. Computer Methods in Applied Mechanics and Engineering, 199, 417–429.

    Article  MathSciNet  MATH  Google Scholar 

  22. Ortiz, M., & Stainier, L. (1999). The variational formulation of viscoplastic constitutive updates. Computer Methods in Applied Mechanics and Engineering, 171, 419–444.

    Article  MathSciNet  MATH  Google Scholar 

  23. Pérez-Foguet, A., Rodríguez-Ferran, A., & Huerta, A. (2000). Numerical differentiation for local and global tangent operators in computational plasticity. Computer Methods in Applied Mechanics and Engineering, 189, 277–296.

    Article  MATH  Google Scholar 

  24. Pérez-Foguet, A., Rodríguez-Ferran, A., & Huerta, A. (2000). Numerical differentiation for non-trivial consistent tangent matrices: An application to the mrs-lade model. International Journal for Numerical Methods in Engineering, 48, 159–184.

    Article  MATH  Google Scholar 

  25. Schröder, J. 2013. A numerical two-scale homogenization scheme: the FE\({}^2\)-method. In Plasticity and beyond—microstructures, chrystal-plasticity and phase transitions (CISM Lecture Notes). Vienna: Springer.

    Google Scholar 

  26. Schröder, J., Neff, P., & Balzani, D. (2005). A variational approach for materially stable anisotropic hyperelasticity. International Journal of Solids and Structures, 42(15), 4352–4371.

    Article  MathSciNet  MATH  Google Scholar 

  27. Simo, J. C. (1988). A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation. Computer Methods in Applied Mechanics and Engineering, 66, 199–219.

    Article  MathSciNet  MATH  Google Scholar 

  28. Simo, J., & Hughes, T. J. R. (1998). Computational inelasticity. Berlin: Springer.

    Google Scholar 

  29. Simo, J., & Miehe, C. (1992). Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation. Computer Methods in Applied Mechanics and Engineering, 98, 41–104.

    Article  MATH  Google Scholar 

  30. Smit, R. J. M., Brekelmans, W. A. M., & Meijer, H. E. H. (1998). Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering, 155, 181–192.

    Article  MATH  Google Scholar 

  31. Tanaka, M., Fujikawa, M., Balzani, D., & Schröder, J. (2014). Robust numerical calculation of tangent moduli at finite strains based on complex-step derivative approximation and its application to localization analysis. Computer Methods in Applied Mechanics and Engineering, 269, 454–470.

    Article  MathSciNet  MATH  Google Scholar 

  32. Tanaka, M., Sasagawa, T., Omote, R., Fujikawa, M., Balzani, D., & Schröder, J. (2015). A highly accurate 1st- and 2nd-order differentiation scheme for hyperelastic material models based on hyper-dual numbers. Computer Methods in Applied Mechanics and Engineering, 283, 22–45.

    Article  MathSciNet  Google Scholar 

  33. Zienkiewicz, O. C., & Taylor, R. L. (1967). The finite element method for solid and structural mechanics. Oxford: Butterworth-Heinemann.

    Google Scholar 

Download references

Acknowledgments

Financial funding by the DFG Priority Program 1648 (SPPEXA “Software for Exascale Computing”), projects BA 2823/8-1 and SCHR 570/19-1 is greatly acknowledged by D. Balzani and J. Schröder. Furthermore, assistance for the thermo-mechanical calculations by Ashutosh Gandhi is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tanaka, M., Balzani, D., Schröder, J. (2016). Robust Numerical Schemes for an Efficient Implementation of Tangent Matrices: Application to Hyperelasticity, Inelastic Standard Dissipative Materials and Thermo-Mechanics at Finite Strains. In: Weinberg, K., Pandolfi, A. (eds) Innovative Numerical Approaches for Multi-Field and Multi-Scale Problems. Lecture Notes in Applied and Computational Mechanics, vol 81. Springer, Cham. https://doi.org/10.1007/978-3-319-39022-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39022-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39021-5

  • Online ISBN: 978-3-319-39022-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics