Skip to main content

Cells for Cartilage Regeneration

  • Living reference work entry
  • First Online:
Cell Engineering and Regeneration

Abstract

Cartilage, at all sites of our body, has limited intrinsic capacity to repair. There are numerous methods to use when repairing cartilage, and the preferred method depends on the location of the cartilage defect, whether it is the nose, the ear, the airway, or a certain site in the joint. Different cell types with chondrogenic capacities are being used for cartilage regeneration. In this chapter we discuss the expansion in culture, the chondrogenic capacity, and the (clinical) application of articular chondrocytes, nasal chondrocytes, auricular chondrocytes, chondrocyte cell lines, mesenchymal stem cells, and pluripotent stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acharya C, Adesida A, Zajac P, Mumme M, Riesle J, Martin I, Barbero A (2012) Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation. J Cell Physiol 227:88–97

    Article  Google Scholar 

  • Akgun I, Unlu MC, Erdal OA, Ogut T, Erturk M, Ovali E, Kantarci F, Caliskan G, Akgun Y (2015) Matrix-induced autologous mesenchymal stem cell implantation versus matrix-induced autologous chondrocyte implantation in the treatment of chondral defects of the knee: a 2-year randomized study. Arch Orthop Trauma Surg 135:251–263

    Article  Google Scholar 

  • Akihiro Yamashita, Miho Morioka, Yasuhito Yahara, Minoru Okada, Tomohito Kobayashi, Shinichi Kuriyama, Shuichi Matsuda, Noriyuki Tsumaki, (2015) Generation of Scaffoldless Hyaline Cartilaginous Tissue from Human iPSCs. Stem Cell Reports 4 (3):404–418

    Google Scholar 

  • Akihiro Yamashita, Miho Morioka, Hiromi Kishi, Takeshi Kimura, Yasuhito Yahara, Minoru Okada, Kaori Fujita, Hideaki Sawai, Shiro Ikegawa, Noriyuki Tsumaki, (2014) Statin treatment rescues FGFR3 skeletal dysplasia phenotypes. Nature 513 (7519):507–511

    Google Scholar 

  • Aksoy F, Yildirim YS, Demirhan H, Ozturan O, Solakoglu S (2012) Structural characteristics of septal cartilage and mucoperichondrium. J Laryngol Otol 126:38–42

    Article  Google Scholar 

  • Allen Kuan-Liang Chen, Xiaoli Chen, Andre Boon Hwa Choo, Shaul Reuveny, Steve Kah Weng Oh, (2011) Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Research 7 (2):97–111

    Google Scholar 

  • Alexander TH, Sage AB, Chen AC, Schumacher BL, Shelton E, Masuda K, Sah RL, Watson D (2010) Insulin-like growth factor-I and growth differentiation factor-5 promote the formation of tissue-engineered human nasal septal cartilage. Tissue Eng Part C Methods 16:1213–1221

    Article  Google Scholar 

  • Alexander TH, Sage AB, Schumacher BL, Sah RL, Watson D (2006) Human serum for tissue engineering of human nasal septal cartilage. Otolaryngol Head Neck Surg 135:397–403

    Article  Google Scholar 

  • Attur MG, Dave MN, Clancy RM, Patel IR, Abramson SB, Amin AR (2000) Functional genomic analysis in arthritis-affected cartilage: yin-yang regulation of inflammatory mediators by alpha 5 beta 1 and alpha V beta 3 integrins. J Immunol 164:2684–2691

    Article  Google Scholar 

  • Aulthouse AL, Beck M, Griffey E, Sanford J, Arden K, Machado MA, Horton WA (1989) Expression of the human chondrocyte phenotype in vitro. In Vitro Cell Dev Biol 25(7):659–668

    Article  Google Scholar 

  • Baksh D, Boland GM, Tuan RS (2007) Cross-talk between Wnt signaling pathways in human mesenchymal stem cells leads to functional antagonism during osteogenic differentiation. J Cell Biochem 101:1109–1124

    Article  Google Scholar 

  • Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quarto R (2000) Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Exp Hematol 28:707–715

    Article  Google Scholar 

  • Barandun M, Iselin LD, Santini F, Pansini M, Scotti C, Baumhoer D, Bieri O, Studler U, Wirz D, Haug M, Jakob M, Schaefer DJ, Martin I, Barbero A (2015) Generation and characterization of osteochondral grafts with human nasal chondrocytes. J Orthop Res 33:1111–1119

    Article  Google Scholar 

  • Barbero A, Ploegert S, Heberer M, Martin I (2003) Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes. Arthritis Rheum 48:1315–1325

    Article  Google Scholar 

  • Barron V, Merghani K, Shaw G, Coleman CM, Hayes JS, Ansboro S, Manian A, O’Malley G, Connolly E, Nandakumar A, van Blitterswijk CA, Habibovic P, Moroni L, Shannon F, Murphy JM, Barry F (2015) Evaluation of cartilage repair by mesenchymal stem cells seeded on a PEOT/PBT scaffold in an osteochondral defect. Ann Biomed Eng 43:2069–2082

    Article  Google Scholar 

  • Barry F, Boynton RE, Liu B, Murphy JM (2001) Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res 268:189–200

    Article  Google Scholar 

  • Bartlett W, Skinner JA, Gooding CR, Carrington RW, Flanagan AM, Briggs TW, Bentley G (2005) Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br 87:640–645

    Article  Google Scholar 

  • Basad E, Ishaque B, Bachmann G, Stürz H, Steinmeyer J (2010) Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surg Sports Traumatol Arthrosc 18:519–527

    Article  Google Scholar 

  • Bauer BS (2009) Reconstruction of microtia. Plast Reconstr Surg 124:14e–26e

    Article  Google Scholar 

  • Bekkers JE, Tsuchida AI, van Rijen MH, Vonk LA, Dhert WJ, Creemers LB, Saris DB (2013) Single-stage cell-based cartilage regeneration using a combination of chondrons and mesenchymal stromal cells: comparison with microfracture. Am J Sports Med 41:2158–2166

    Article  Google Scholar 

  • Benoit B, Thenet-Gauci S, Hoffschir F, Penformis P, Demignot S, Adolphe M (1995) SV40 large T antigen immortalization of human articular chondrocytes. In: In Vitro Cell Dev Biol, vol 31, pp 174–177

    Google Scholar 

  • Bentley G, Biant LC, Carrington RW, Akmal M, Goldberg A, Williams AM, Skinner JA, Pringle J (2003) A prospective, randomised comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br 85:223–230

    Article  Google Scholar 

  • Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30:215–224

    Article  Google Scholar 

  • Benya PD, Brown PD, Padilla SR (1988) Microfilament modification by dihydrocytochalasin B causes retinoic acid-modulated chondrocytes to reexpress the differentiated collagen phenotype without a change in shape. J Cell Biol 106:161–170

    Article  Google Scholar 

  • Bermueller C, Schwarz S, Elsaesser AF, Sewing J, Baur N, BA v, Scheithauer M, Notbohm H, Rotter N (2013) Marine collagen scaffolds for nasal cartilage repair: prevention of nasal septal perforations in a new orthotopic rat model using tissue engineering techniques. Tissue Eng Part A 19:2201–2214

    Article  Google Scholar 

  • Bernardo ME, Fibbe WE (2013) Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13:392–402

    Article  Google Scholar 

  • Bernhard JC, Vunjak-Novakovic G (2016) Should we use cells, biomaterials, or tissue engineering for cartilage regeneration? Stem Cell Res Ther 7:9

    Article  Google Scholar 

  • Bernier SM, Goltzman D (1993) Regulation of expression of the chondrogenic phenotype in a skeletal cell line (CFK2) in vitro. J Bone Miner Res 8:475–484

    Article  Google Scholar 

  • Bichara DA, Zhao X, Hwang NS, Bodugoz-Senturk H, Yaremchuk MJ, Randolph MA, Muratoglu OK (2010) Porous poly(vinyl alcohol)-alginate gel hybrid construct for neocartilage formation using human nasoseptal cells. J Surg Res 163:331–336

    Article  Google Scholar 

  • Bichara DA, Pomerantseva I, Zhao X, Zhou L, Kulig KM, Tseng A, Kimura AM, Johnson MA, Vacanti JP, Randolph MA, Sundback CA (2014) Successful creation of tissue-engineered autologous auricular cartilage in an immunocompetent large animal model. Tissue Eng Part A 20:303–312

    Article  Google Scholar 

  • Bleuel J, Zaucke F, Brüggemann GP, Niehoff A (2015) Effects of cyclic tensile strain on chondrocyte metabolism: a systematic review. PLoS One 10(3):25

    Article  Google Scholar 

  • Block JA, Inerot SE, Gitelis S, Kimura JH (1991) Synthesis of chondrocytic keratan sulphate-containing proteoglycans by human chondrosarcoma cells in long-term cell culture. J Bone Joint Surg Am 73(5):647–658

    Article  Google Scholar 

  • Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B (2006) Aging of mesenchymal stem cell in vitro. BMC Cell Biol 7:14

    Article  Google Scholar 

  • Bornes TD, Adesida AB, Jomha NM (2014) Mesenchymal stem cells in the treatment of traumatic articular cartilage defects: a comprehensive review. Arthritis Res Ther 16:321–319

    Article  Google Scholar 

  • Brighton CT, Lorich DG, Kupcha R, Reilly TM, Jones AR, Woodbury RA 2nd (1992) The pericyte as a possible osteoblast progenitor cell. Clin Orthop Relat Res 287–299

    Google Scholar 

  • Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 31:889–895

    Article  Google Scholar 

  • Bujia J, Pitzke P, Kastenbauer E, Wilmes E, Hammer C (1996) Effect of growth factors on matrix synthesis by human nasal chondrocytes cultured in monolayer and in agar. Eur Arch Otorhinolaryngol 253:336–340

    Google Scholar 

  • Bujia J, Sittinger M, Wilmes E, Hammer C (1994) Effect of growth factors on cell proliferation by human nasal septal chondrocytes cultured in monolayer. Acta Otolaryngol 114:539–543

    Article  Google Scholar 

  • Burke J, Hunter M, Kolhe R, Isales C, Hamrick M, Fulzele S (2016) Therapeutic potential of mesenchymal stem cell based therapy for osteoarthritis. Clin Transl Med 5:1–8

    Article  Google Scholar 

  • Candela ME, Yasuhara R, Iwamoto M, Enomoto-Iwamoto M (2014) Resident mesenchymal progenitors of articular cartilage. Matrix Biol 39:44–49

    Article  Google Scholar 

  • Candrian C, Vonwil D, Barbero A, Bonacina E, Miot S, Farhadi J, Wirz D, Dickinson S, Hollander A, Jakob M, Li Z, Alini M, Heberer M, Martin I (2008) Engineered cartilage generated by nasal chondrocytes is responsive to physical forces resembling joint loading. Arthritis Rheum 58:197–208

    Article  Google Scholar 

  • Cao Y, Rodriguez A, Vacanti M, Ibarra C, Arevalo C, Vacanti CA (1998) Comparative study of the use of poly(glycolic acid), calcium alginate and pluronics in the engineering of autologous porcine cartilage. J Biomater Sci Polym Ed 9:475–487

    Article  Google Scholar 

  • Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    Article  Google Scholar 

  • Caplan AI (2008) All MSCs are pericytes? Cell Stem Cell 3:229–230

    Article  Google Scholar 

  • Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347

    Article  Google Scholar 

  • Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9:11–15

    Article  Google Scholar 

  • Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084

    Article  Google Scholar 

  • Chang AA, Reuther MS, Briggs KK, Schumacher BL, Williams GM, Corr M, Sah RL, Watson D (2012) In vivo implantation of tissue-engineered human nasal septal neocartilage constructs: a pilot study. Otolaryngol Head Neck Surg 146:46–52

    Article  Google Scholar 

  • Chase LG, Lakshmipathy U, Solchaga LA, Rao MS, Vemuri MC (2010) A novel serum-free medium for the expansion of human mesenchymal stem cells. Stem Cell Res Ther 1:8

    Article  Google Scholar 

  • Cheng A, Hardingham TE, Kimber SJ (2014) Generating cartilage repair from pluripotent stem cells. Tissue Eng Part B Rev 20:257–266

    Article  Google Scholar 

  • Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH (2005) Insulin-transferrin-selenium prevent human chondrocyte dedifferentiation and promote the formation of high quality tissue engineered human hyaline cartilage. Eur Cell Mater 9:58–67; discussion 67:58–67

    Article  Google Scholar 

  • Chung C, Erickson IE, Mauck RL, Burdick JA (2008) Differential behavior of auricular and articular chondrocytes in hyaluronic acid hydrogels. Tissue Eng Part A 14:1121–1131

    Article  Google Scholar 

  • Cigan AD, Nims RJ, Vunjak-Novakovic G, Hung CT, Ateshian GA (2016) Optimizing nutrient channel spacing and revisiting TGF-beta in large engineered cartilage constructs. J Biomech 49:2089–2094

    Article  Google Scholar 

  • Cleary MA, van Osch GJ, Brama PA, Hellingman CA, Narcisi R (2015) FGF, TGF beta and Wnt crosstalk: embryonic to in vitro cartilage development from mesenchymal stem cells. J Tissue Eng Regen Med 9(4):332–342

    Article  Google Scholar 

  • Cole BJ, Farr J, Winalski CS, Hosea T, Richmond J, Mandelbaum B, De Deyne PG (2011) Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am J Sports Med 39:1170–1179

    Article  Google Scholar 

  • Concaro S, Concaro C (2016) Cell transplantation for cartilage repair. An update. Aspetar Sports Med J 5:252–255

    Google Scholar 

  • Conde J, Otero M, Scotece M, Abella V, Lopez V, Pino J, Gomez R, Lago F, Goldring MB, Gualillo O (2016) E74-like factor 3 and nuclear factor-kappaB regulate lipocalin-2 expression in chondrocytes. J Physiol 594:6133–6146

    Article  Google Scholar 

  • Correa D, Somoza RA, Lin P, Greenberg S, Rom E, Duesler L, Welter JF, Yayon A, Caplan AI (2015) Sequential exposure to fibroblast growth factors (FGF) 2, 9 and 18 enhances hMSC chondrogenic differentiation. Osteoarthr Cartil 23:443–453

    Article  Google Scholar 

  • Correro-Shahgaldian MR, Ghayor C, Spencer ND, Weber FE, Gallo LM (2014) A model system of the dynamic loading occurring in synovial joints: the biological effect of plowing on pristine cartilage. Cells Tissues Organs 199:364–372

    Article  Google Scholar 

  • Crawford DC, DeBerardino TM, Williams RJ 3rd (2012) NeoCart, an autologous cartilage tissue implant, compared with microfracture for treatment of distal femoral cartilage lesions: an FDA phase-II prospective, randomized clinical trial after two years. J Bone Joint Surg Am 94:979–989

    Article  Google Scholar 

  • Cui X, Hasegawa A, Lotz M, D’Lima D (2012) Structured three-dimensional co-culture of mesenchymal stem cells with meniscus cells promotes meniscal phenotype without hypertrophy. Biotechnol Bioeng 109(9):2369–2380

    Article  Google Scholar 

  • Darling EM, Hu JC, Athanasiou KA (2004) Zonal and topographical differences in articular cartilage gene expression. J Orthop Res 22:1182–1187

    Article  Google Scholar 

  • Da Silva Meirelles L, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26:2287–2299

    Article  Google Scholar 

  • Dashtdar H, Rothan HA, Tay T, Ahmad RE, Ali R, Tay LX, Chong PP, Kamarul T (2011) A preliminary study comparing the use of allogenic chondrogenic pre-differentiated and undifferentiated mesenchymal stem cells for the repair of full thickness articular cartilage defects in rabbits. J Orthop Res 29:1336–1342

    Article  Google Scholar 

  • De Bari C, Dell’Accio F, Luyten FP (2001) Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum 44:85–95

    Article  Google Scholar 

  • De Boer J, Wang HJ, van Blitterswijk C (2004) Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Eng 10:393–401

    Article  Google Scholar 

  • Decker RS, Koyama E, Pacifici M (2014) Genesis and morphogenesis of limb synovial joints and articular cartilage. Matrix Biol 39:5–10

    Article  Google Scholar 

  • Decker RS, Koyama E, Pacifici M (2015) Articular cartilage: structural and developmental intricacies and questions. Curr Osteoporos Rep 13:407–414

    Article  Google Scholar 

  • Dell’Accio F, De BC, Luyten FP (2001) Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo. Arthritis Rheum 44:1608–1619

    Article  Google Scholar 

  • DeLise AM, Fischer L, Tuan RS (2000) Cellular interactions and signaling in cartilage development. Osteoarthr Cartil 8:309–334

    Article  Google Scholar 

  • Deshmukh K, Kline WH (1976) Characterization of collagen and its precursors synthesized by rabbit-articular-cartilage cells in various culture systems. Eur J Biochem 69:117–123

    Article  Google Scholar 

  • De Vries-van Melle ML, Narcisi R, Kops N, Koevoet WJ, Bos PK, Murphy JM, Verhaar JA, van der Kraan PM, van Osch GJ (2014) Chondrogenesis of mesenchymal stem cells in an osteochondral environment is mediated by the subchondral bone. Tissue Eng Part A 20:23–33

    Article  Google Scholar 

  • De Windt TS, Vonk LA, Slaper-Cortenbach IC, van den Broek MP, Nizak R, van Rijen MH, de Weger RA, Dhert WJ, Saris DB (2016) Allogeneic mesenchymal stem cells stimulate cartilage regeneration and are safe for single-stage cartilage repair in humans upon mixture with recycled autologous Chondrons. Stem Cells 35:256–264

    Article  Google Scholar 

  • Diaz-Gomez L, Alvarez-Lorenzo C, Concheiro A, Silva M, Dominguez F, Sheikh FA, Cantu T, Desai R, Garcia VL, Macossay J (2014) Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation. Mater Sci Eng C Mater Biol Appl 40:180–188

    Article  Google Scholar 

  • Diaz-Flores L, Gutierrez R, Gonzalez P, Varela H (1991) Inducible perivascular cells contribute to the neochondrogenesis in grafted perichondrium. Anat Rec 229:1–8

    Article  Google Scholar 

  • Diekman BO, Wu C-L, Louer CR, Furman BD, Huebner JL, Kraus VB, Olson SA, Guilak F (2013) Intra-articular delivery of purified mesenchymal stem cells from C57BL/6 or MRL/MpJ superhealer mice prevents posttraumatic arthritis. Cell Transplant 22:1395–1408

    Article  Google Scholar 

  • Do Amaral RJ, Pedrosa CS, Kochem MC, Silva KR, Aniceto M, Claudio-da-Silva C, Borojevic R, Baptista LS (2012) Isolation of human nasoseptal chondrogenic cells: a promise for cartilage engineering. Stem Cell Res 8:292–299

    Article  Google Scholar 

  • Dobratz EJ, Kim SW, Voglewede A, Park SS (2009) Injectable cartilage: using alginate and human chondrocytes. Arch Facial Plast Surg 11:40–47

    Article  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  Google Scholar 

  • Doucet C, Ernou I, Zhang Y, Llense J-R, Begot L, Holy X, Lataillade J-J (2005) Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. J Cell Physiol 205:228–236

    Article  Google Scholar 

  • Dozin B, Malpeli M, Cancedda R, Bruzzi P, Calcagno S, Molfetta L, Priano F, Kon E, Marcacci M (2005) Comparative evaluation of autologous chondrocyte implantation and mosaicplasty: a multicentered randomized clinical trial. Clin J Sport Med 15:220–226

    Article  Google Scholar 

  • Elsaesser AF, Bermueller C, Schwarz S, Koerber L, Breiter R, Rotter N (2014) In vitro cytotoxicity and in vivo effects of a decellularized xenogeneic collagen scaffold in nasal cartilage repair. Tissue Eng Part A 20:1668–1678

    Article  Google Scholar 

  • Elsaesser AF, Schwarz S, Joos H, Koerber L, Brenner RE, Rotter N (2016) Characterization of a migrative subpopulation of adult human nasoseptal chondrocytes with progenitor cell features and their potential for in vivo cartilage regeneration strategies. Cell Biosci 6:11. https://doi.org/10.1186/s13578-016-0078-6. eCollection@2016.:11-0078

    Article  Google Scholar 

  • El Sayed K, Haisch A, John T, Marzahn U, Lohan A, Müller RD, Kohl B, Ertel W, Stoelzel K, Schulze-Tanzil G (2010) Heterotopic autologous chondrocyte transplantation – a realistic approach to support articular cartilage repair? Tissue Eng Part B Rev 16:603–616

    Article  Google Scholar 

  • Engen CN, Engebretsen L, Ã…røen A (2010) Knee cartilage defect patients enrolled in randomized controlled trials are not representative of patients in Orthopedic practice. Cartilage 1:312–319

    Article  Google Scholar 

  • Elvidge J, Bullement A, Hatswell AJ (2016) Cost effectiveness of characterised chondrocyte implantation for treatment of cartilage defects of the knee in the UK. PharmacoEconomics 34:1145–1159

    Article  Google Scholar 

  • Farhadi J, Fulco I, Miot S, Wirz D, Haug M, Dickinson SC, Hollander AP, Daniels AU, Pierer G, Heberer M, Martin I (2006) Precultivation of engineered human nasal cartilage enhances the mechanical properties relevant for use in facial reconstructive surgery. Ann Surg 244:978–985

    Article  Google Scholar 

  • Faqeh Al H, Nor Hamdan BMY, Chen H-C, Aminuddin BS, Ruszymah BHI (2012) The potential of intra-articular injection of chondrogenic-induced bone marrow stem cells to retard the progression of osteoarthritis in a sheep model. Exp Gerontol 47:458–464

    Article  Google Scholar 

  • Fekete N, Rojewski MT, Lotfi R, Schrezenmeier H (2014) Essential components for ex vivo proliferation of mesenchymal stromal cells. Tissue Eng Part C Methods 20:129–139

    Article  Google Scholar 

  • Ferlin KM, Prendergast ME, Miller ML, Kaplan DS, Fisher JP (2016) Influence of 3D printed porous architecture on mesenchymal stem cell enrichment and differentiation. Acta Biomater 32:161–169

    Article  Google Scholar 

  • Fierro F, Illmer T, Jing D, Schleyer E, Ehninger G, Boxberger S, Bornhauser M (2007) Inhibition of platelet-derived growth factor receptorbeta by imatinib mesylate suppresses proliferation and alters differentiation of human mesenchymal stem cells in vitro. Cell Prolif 40:355–366

    Article  Google Scholar 

  • Finger F, Schorle C, Soder S, Zien A, Goldring MB, Aigner T (2004) Phenotypic characterization of human chondrocyte cell line C-20/A4: a comparison between monolayer and alginate suspension culture. Cells Tissues Organs 178(2):65–77

    Article  Google Scholar 

  • Finger F, Schorle C, Zien A, Gebhard P, Goldring MB, Aigner T (2003) Molecular phenotyping of human chondrocyte cell lines T/C-28a2, T/C-28a4, and C-28/I2. Arthritis Rheum 48(12):3395–3403

    Article  Google Scholar 

  • Francis-West PH, Parish J, Lee K, Archer CW (1999a) BMP/GDF-signalling interactions during synovial joint development. Cell Tissue Res 296(1):111–9

    Google Scholar 

  • Francis-West PH, Abdelfattah A, Chen P, Allen C, Parish J, Ladher R, Allen S, MacPherson S, Luyten FP, Archer CW (1999b) Mechanisms of GDF-5 action during skeletal development. Development 126(6):1305–15

    Google Scholar 

  • Freymann U, Endres M, Neumann K, Scholman HJ, Morawietz L, Kaps C (2012) Expanded human meniscus-derived cells in 3-D polymer-hyaluronan scaffolds for meniscus repair. Acta Biomater 8:677–685

    Article  Google Scholar 

  • Friedenstein AJ, Deriglasova UF, Kulagina NN, Panasuk AF, Rudakowa SF, Luria EA, Ruadkow IA (1974) Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 2:83–92

    Google Scholar 

  • Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403

    Google Scholar 

  • Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274

    Google Scholar 

  • Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390

    Google Scholar 

  • Frisbie DD, Kisiday JD, Kawcak CE, Werpy NM, McIlwraith CW (2009) Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis. J Orthop Res 27:1675–1680

    Article  Google Scholar 

  • Fulco I, Miot S, Haug MD, Barbero A, Wixmerten A, Feliciano S, Wolf F, Jundt G, Marsano A, Farhadi J, Heberer M, Jakob M, Schaefer DJ, Martin I (2014) Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial. Lancet 384:337–346

    Article  Google Scholar 

  • Furumatsu T, Kanazawa T, Yokoyama Y, Abe N, Ozaki T (2011) Inner meniscus cells maintain higher chondrogenic phenotype compared with outer meniscus cells. Connect Tissue Res 52:459–465

    Article  Google Scholar 

  • Gadjanski I, Spiller K, Vunjak-Novakovic G (2012) Time-dependent processes in stem cell-based tissue engineering of articular cartilage. Stem Cell Rev 8:863–881

    Article  Google Scholar 

  • Gardner OF, Fahy N, Alini M, Stoddart MJ (2016) Joint mimicking mechanical load activates TGFbeta1 in fibrin-poly(ester-urethane) scaffolds seeded with mesenchymal stem cells. J Tissue Eng Regen Med 11:2663–2666

    Article  Google Scholar 

  • Gebauer M, Saas J, Sohler F, Haag J, Soder S, Pieper M, Bartnik E, Beninga J, Zimmer R, Aigner T (2005) Comparison of the chondrosarcoma cell line SW1353 with primary human adult articular chondrocytes with regard to their gene expression profile and reactivity to IL-1beta. Osteoarthr Cartil 13(8):697–708

    Article  Google Scholar 

  • Ghazanfari R, Li H, Zacharaki D, Lim HC, Scheding S (2016) Human non-hematopoietic CD271pos/CD140alow/neg bone marrow stroma cells Fulfill stringent stem cell criteria in serial transplantations. Stem Cells Dev. https://doi.org/10.1089/scd.2016.0169

  • Giannini S, Buda R, Vannini F, Cavallo M, Grigolo B (2009) One-step bone marrow-derived cell transplantation in talar osteochondral lesions. Clin Orthop Relat Res 467:3307–3320

    Article  Google Scholar 

  • Gionti E, Pontarelli G, Cancedda R (1985) Avian myelocytomatosis virus immortalizes differentiated quail chondrocytes. Proc Natl Acad Sci U S A 82:2756–2760

    Article  Google Scholar 

  • Glenister TW (1976) An embryological view of cartilage. J Anat 122:323–330

    Google Scholar 

  • Glowacki J, Trepman E, Folkman J (1983) Cell shape and phenotypic expression in chondrocytes. Proc Soc Exp Biol Med 172:93–98

    Article  Google Scholar 

  • Goldring MB (2004a) Culture of immortalized chondrocytes and their use as models of chondrocyte function. Methods Mol Med 100:37–52

    Google Scholar 

  • Goldring MB (2004b) Immortalization of human articular chondrocytes for generation of stable, differentiated cell lines. Methods Mol Med 100:23–36

    Google Scholar 

  • Goldring MB, Tsuchimochi K, Ijiri K (2006) The control of chondrogenesis. J Cell Biochem 97:33–44

    Article  Google Scholar 

  • Goldring MB, Birkhead JR, Suen LF, Yamin R, Mizuno S, Glowacki J, Arbiser JL, Apperley JF (1994) Interleukin-1 beta-modulated gene expression in immortalized human chondrocytes. J Clin Invest 94:2307–2316

    Article  Google Scholar 

  • Goldring MB, Sandell LJ, Stephenson ML, Krane SM (1986) Immune interferon suppresses levels of procollagen mRNA and type II collagen synthesis in cultured human articular and costal chondrocytes. J Biol Chem 261(19):9049–9055

    Google Scholar 

  • Gooding CR, Bartlett W, Bentley G, Skinner JA, Carrington R, Flanagan A (2006) A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: periosteum covered versus type I/III collagen covered. Knee 13:203–210

    Article  Google Scholar 

  • Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E, Lee JH, Loh YH, Manos PD, Montserrat N, Panopoulos AD, Ruiz S, Wilbert ML, Yu J, Kirkness EF, Izpisua Belmonte JC, Rossi DJ, Thomson JA, Eggan K, Daley GQ, Goldstein LS, Zhang K (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471(7336):63–67

    Article  Google Scholar 

  • Grall FT, Prall WC, Wei W, Gu X, Cho JY, Choy BK, Zerbini LF, Inan MS, Goldring SR, Gravallese EM, Goldring MB, Oettgen P, Libermann TA (2005) The Ets transcription factor ESE-1 mediates induction of the COX-2 gene by LPS in monocytes. FEBS J 272(7):1676–1687

    Article  Google Scholar 

  • Grayson WL, Bhumiratana S, Grace Chao PH, Hung CT, Vunjak-Novakovic G (2010) Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors and medium perfusion. Osteoarthr Cartil 18:714–723

    Article  Google Scholar 

  • Greco KV, Iqbal AJ, Rattazzi L, Nalesso G, Moradi-Bidhendi N, Moore AR, Goldring MB, Dell’accio F, Perretti M (2011) High density micromass cultures of a human chondrocyte cell line: a reliable assay system to reveal the modulatory functions of pharmacological agents. Biochem Pharmacol 82:1919–1929

    Article  Google Scholar 

  • Greco KV, Nalesso G, Kaneva MK, Sherwood J, Iqbal AJ, Moradi-Bidhendi N, Dell’Accio F, Perretti M (2014) Analyses on the mechanisms that underlie the chondroprotective properties of calcitonin. Biochem Pharmacol 91:348–358

    Article  Google Scholar 

  • Grigolo B, Roseti L, Neri S, Gobbi P, Jensen P, Major EO, Facchini A (2002) Human articular chondrocytes immortalized by HPV-16 E6 and E7 genes: maintenance of differentiated phenotype under defined culture conditions. Osteoarthr Cartil 10(11):879–889

    Article  Google Scholar 

  • Grigoriadis AE, Heersche JN, Aubin JE (1988) Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J Cell Biol 106(6):2139–2151

    Article  Google Scholar 

  • Guilak F, Butler DL, Goldstein SA, Baaijens FP (2014) Biomechanics and mechanobiology in functional tissue engineering. J Biomech 47(9):1933–1940

    Article  Google Scholar 

  • Gupta PK, Das AK, Chullikana A, Majumdar AS (2012) Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Res Ther 3:25

    Article  Google Scholar 

  • Haisch A, Klaring S, Groger A, Gebert C, Sittinger M (2002) A tissue-engineering model for the manufacture of auricular-shaped cartilage implants. Eur Arch Otorhinolaryngol 259:316–321

    Google Scholar 

  • Hall BK, Miyake T (2000) All for one and one for all: condensations and the initiation of skeletal development. Bioessays 22:138–147

    Article  Google Scholar 

  • Hamamura K, Goldring MB, Yokota H (2009) Involvement of p38 MAPK in regulation of MMP13 mRNA in chondrocytes in response to surviving stress to endoplasmic reticulum. Arch Oral Biol 54:279–286

    Article  Google Scholar 

  • Handorf AM, Li WJ (2011) Fibroblast growth factor-2 primes human mesenchymal stem cells for enhanced chondrogenesis. PLoS One 6:e22887

    Article  Google Scholar 

  • Haraguchi Y, Matsuura K, Shimizu T, Yamato M, Okano T (2015) Simple suspension culture system of human iPS cells maintaining their pluripotency for cardiac cell sheet engineering. J Tissue Eng Regen Med 9(12):1363–1375

    Article  Google Scholar 

  • Hashimoto K, Otero M, Imagawa K, de Andres MC, Coico JM, Roach HI, Oreffo RO, Marcu KB, Goldring MB (2013) Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1beta (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites. J Biol Chem 288:10061–10072

    Article  Google Scholar 

  • Healy ZR, Lee NH, Gao X, Goldring MB, Talalay P, Kensler TW, Konstantopoulos K (2005) Divergent responses of chondrocytes and endothelial cells to shear stress: cross-talk among COX-2, the phase 2 response, and apoptosis. Proc Natl Acad Sci U S A 102(39):14010–14015

    Article  Google Scholar 

  • Heinemeier KM, Schjerling P, Heinemeier J, Møller MB, Krogsgaard MR, Grum-Schwensen T, Petersen MM, Kjaer M (2016) Radiocarbon dating reveals minimal collagen turnover in both healthy and osteoarthritic human cartilage. Sci Transl Med 8(346):346ra9

    Article  Google Scholar 

  • Hellingman CA, Verwiel ET, Slagt I, Koevoet W, Poublon RM, Nolst-Trenité GJ, Baatenburg de Jong RJ, Jahr H, van Osch GJ (2011a) Differences in cartilage-forming capacity of expanded human chondrocytes from ear and nose and their gene expression profiles. Cell Transplant 20:925–940

    Article  Google Scholar 

  • Hellingman CA, Davidson ENB, Koevoet W, Vitters EL, van den Berg WB, van Osch GJVM, van der Kraan PM (2011b) Smad signaling determines chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells: inhibition of Smad1/5/8P prevents terminal differentiation and calcification. Tissue Eng Part A 17:1157–1167

    Article  Google Scholar 

  • Helms JA, Cordero D, Tapadia MD (2005) New insights into craniofacial morphogenesis. Development 132:851–861

    Article  Google Scholar 

  • Hermida-Gómez T, Fuentes-Boquete I, Gimeno-Longas MJ, Muiños-López E, Díaz-Prado S, de Toro FJ, Blanco FJ (2011) Bone marrow cells immunomagnetically selected for CD271+ antigen promote in vitro the repair of articular cartilage defects. Tissue Eng Part A 17:1169–1179

    Article  Google Scholar 

  • Hohman MH, Lindsay RW, Pomerantseva I, Bichara DA, Zhao X, Johnson M, Kulig KM, Sundback CA, Randolph MA, Vacanti JP, Cheney ML, Hadlock TA (2014) Ovine model for auricular reconstruction: porous polyethylene implants. Ann Otol Rhinol Laryngol 123:135–140

    Article  Google Scholar 

  • Holden PK, Liaw LH, Wong BJ (2008) Human nasal cartilage ultrastructure: characteristics and comparison using scanning electron microscopy. Laryngoscope 118:1153–1156

    Article  Google Scholar 

  • Holder N (1977) An experimental investigation into the early development of the chick elbow joint. J Embryol Exp Morphol 39:115–127

    Google Scholar 

  • Homicz MR, Chia SH, Schumacher BL, Masuda K, Thonar EJ, Sah RL, Watson D (2003) Human septal chondrocyte redifferentiation in alginate, polyglycolic acid scaffold, and monolayer culture. Laryngoscope 113:25–32

    Article  Google Scholar 

  • Homicz MR, Schumacher BL, Sah RL, Watson D (2002) Effects of serial expansion of septal chondrocytes on tissue-engineered neocartilage composition. Otolaryngol Head Neck Surg 127:398–408

    Article  Google Scholar 

  • Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R (2003) Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial. J Bone Joint Surg Am 85-A:185–192

    Article  Google Scholar 

  • Horie M, Choi H, Lee RH, Reger RL, Ylostalo J, Muneta T, Sekiya I, Prockop DJ (2012) Intra-articular injection of human mesenchymal stem cells (MSCs) promote rat meniscal regeneration by being activated to express Indian hedgehog that enhances expression of type II collagen. Osteoarthr Cartil 20:1197–1207

    Article  Google Scholar 

  • Horwitz AL, Dorfman A (1970) The growth of cartilage cells in soft agar and liquid suspension. J Cell Biol 45:434–438

    Article  Google Scholar 

  • Huang BJ, Hu JC, Athanasiou KA (2016) Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials 98:1–22

    Article  Google Scholar 

  • Huurne ter M, Schelbergen R, Blattes R, Blom A, de Munter W, Grevers LC, Jeanson J, Noël D, Casteilla L, Jorgensen C, van den Berg W, van Lent PLEM (2012) Antiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis. Arthritis Rheum 64:3604–3613

    Article  Google Scholar 

  • Hsu SH, Chang SH, Yen HJ, Whu SW, Tsai CL, Chen DC (2006) Evaluation of biodegradable polyesters modified by type II collagen and Arg-Gly-asp as tissue engineering scaffolding materials for cartilage regeneration. Artif Organs 30:42–55

    Article  Google Scholar 

  • Hubka KM, Dahlin RL, Meretoja VV, Kasper FK, Mikos AG (2014) Enhancing chondrogenic phenotype for cartilage tissue engineering: monoculture and coculture of articular chondrocytes and mesenchymal stem cells. Tissue Eng Part B Rev 20:641–654

    Article  Google Scholar 

  • Hyde G, Boot-Handford RP, Wallis GA (2008) Col2a1 lineage tracing reveals that the meniscus of the knee joint has a complex cellular origin. J Anat 213:531–538

    Google Scholar 

  • Hyde G, Dover S, Aszodi A, Wallis GA, Boot-Handford RP (2007) Lineage tracing using matrilin-1 gene expression reveals that articular chondrocytes exist as the joint interzone forms. Dev Biol 304:825–833

    Article  Google Scholar 

  • Ijiri K, Zerbini LF, Peng H, Correa RG, Lu B, Walsh N, Zhao Y, Taniguchi N, Huang XL, Otu H, Wang H, Fei Wang J, Komiya S, Ducy P, Rahman MU, Flavell RA, Libermann TA, Gravallese EM, Oettgen P, Goldring MB (2005) A novel role for GADD45b as a mediator of MMP-13 gene expression during chondrocyte terminal differentiation. J Biol Chem 280(46):38544–38555

    Article  Google Scholar 

  • Im HJ, Pacione C, Chubinskaya S, Van Wijnen AJ, Sun Y, Loeser RF (2003) Inhibitory effects of insulin-like growth factor-1 and osteogenic protein-1 on fibronectin fragment- and interleukin-1beta-stimulated matrix metalloproteinase-13 expression in human chondrocytes. J Biol Chem 278:25386–25394

    Article  Google Scholar 

  • Ishizeki K, Shinagawa T, Nawa T (2003) Origin-associated features of chondrocytes in mouse Meckel’s cartilage and costal cartilage: an in vitro study. Ann Anat 185:403–410

    Article  Google Scholar 

  • Isogai N, Morotomi T, Hayakawa S, Munakata H, Tabata Y, Ikada Y, Kamiishi H (2005) Combined chondrocyte-copolymer implantation with slow release of basic fibroblast growth factor for tissue engineering an auricular cartilage construct. J Biomed Mater Res A 74:408–418

    Article  Google Scholar 

  • Isogai N, Kusuhara H, Ikada Y, Ohtani H, Jacquet R, Hillyer J, Lowder E, Landis WJ (2006) Comparison of different chondrocytes for use in tissue engineering of cartilage model structures. Tissue Eng 12:691–703

    Article  Google Scholar 

  • Ito T, Sawada R, Fujiwara Y, Seyama Y, Tsuchiya T (2007) FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-beta2. Biochem Biophys Res Commun 359:108–114

    Article  Google Scholar 

  • Iwamoto M, Higuchi Y, Enomoto-Iwamoto M, Kurisu K, Koyama E, Yeh H, Rosenbloom J, Pacifici M (2001) The role of ERG (ets related gene) in cartilage development. Osteoarthr Cartil 9:S41–S47

    Article  Google Scholar 

  • Iwamoto M, Koyama E, Enomoto-Iwamoto M, Pacifici M (2005) The balancing act of transcription factors C-1-1 and Runx2 in articular cartilage development. Biochem Biophys Res Commun 328:777–182

    Article  Google Scholar 

  • Jayasuriya CT, Goldring MB, Terek R, Chen Q (2012) Matrilin-3 induction of IL-1 receptor antagonist is required for up-regulating collagen II and aggrecan and down-regulating ADAMTS-5 gene expression. Arthritis Res Ther 14:R197

    Article  Google Scholar 

  • Jenner F, IJpma A, Cleary M, Heijsman D, Narcisi R, van der Spek PJ, Kremer A, van Weeren R, Brama P, van Osch GJ (2014) Differential gene expression of the intermediate and outer interzone layers of developing articular cartilage in murine embryos. Stem Cells Dev 23:1883–1898

    Article  Google Scholar 

  • Jian-Wei X, Randolph MA, Peretti GM, Nazzal JA, Roses RE, Morse KR, Yaremchuk MJ (2005) Producing a flexible tissue-engineered cartilage framework using expanded polytetrafluoroethylene membrane as a pseudoperichondrium. Plast Reconstr Surg 116:577–589

    Article  Google Scholar 

  • Jian H, Shen X, Liu I, Semenov M, He X, Wang X-F (2006) Smad3-dependent nuclear translocation of beta-catenin is required for TGF-beta1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells. Genes Dev 20:666–674

    Article  Google Scholar 

  • Joana Frobel, Hatim Hemeda, Michael Lenz, Giulio Abagnale, Sylvia Joussen, Bernd Denecke, Tomo Å arić, Martin Zenke, Wolfgang Wagner, (2014) Epigenetic Rejuvenation of Mesenchymal Stromal Cells Derived from Induced Pluripotent Stem Cells. Stem Cell Reports 3 (3):414–422

    Google Scholar 

  • Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238:265–272

    Article  Google Scholar 

  • Johnstone B, Barthel T, Yoo J (2003) In vitro chondrogenesis with mammalian progenitor cells. In: Rosier RV, Evans CH (eds) Molecular biology of orthopaedics. American Academy of Orthopaedic Surgeons, Rosemont, pp 273–287

    Google Scholar 

  • Judson RL, Babiarz JE, Venere M, Blelloch R (2009) Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol 27 (5):459–61

    Google Scholar 

  • Kahn J, Shwartz Y, Blitz E, Krief S, Sharir A, Breitel DA, Rattenbach R, Relaix F, Maire P, Rountree RB, Kingsley DM, Zelzer E (2009) Muscle contraction is necessary to maintain joint progenitor cell fate. Dev Cell 16:734–743

    Article  Google Scholar 

  • Kaltz N, Ringe J, Holzwarth C, Charbord P, Niemeyer M, Jacobs VR, Peschel C, Häupl T, Oostendorp RAJ (2010) Novel markers of mesenchymal stem cells defined by genome-wide gene expression analysis of stromal cells from different sources. Exp Cell Res 316:2609–2617

    Article  Google Scholar 

  • Kamil SH, Vacanti MP, Vacanti CA, Eavey RD (2004a) Microtia chondrocytes as a donor source for tissue-engineered cartilage. Laryngoscope 114:2187–2190

    Article  Google Scholar 

  • Kamil SH, Vacanti MP, Aminuddin BS, Jackson MJ, Vacanti CA, Eavey RD (2004b) Tissue engineering of a human sized and shaped auricle using a mold. Laryngoscope 114:867–870

    Article  Google Scholar 

  • Katsutsugu Umeda, Jiangang Zhao, Paul Simmons, Edouard Stanley, Andrew Elefanty, Naoki Nakayama, (2012) Human chondrogenic paraxial mesoderm, directed specification and prospective isolation from pluripotent stem cells. Scientific Reports 2 (1)

    Google Scholar 

  • Kazutoshi Takahashi, Shinya Yamanaka, (2006) Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 126 (4):663–676

    Google Scholar 

  • Kazutoshi Takahashi, Shinya Yamanaka, (2016) A decade of transcription factor-mediated reprogramming to pluripotency. Nature Reviews Molecular Cell Biology 17 (3):183–193

    Google Scholar 

  • Khozoee B, Mafi P, Mafi R, Khan W (2016) Mechanical stimulation protocols of human derived cells in articular cartilage tissue engineering - a systematic review. Curr Stem Cell Res Ther 12:260–270

    Article  Google Scholar 

  • Kilian KA, Bugarija B, Lahn BT, Mrksich M (2010) Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A 107:4872–4877

    Article  Google Scholar 

  • Kim SW, Dobratz EJ, Ballert JA, Voglewede AT, Park SS (2009) Subcutaneous implants coated with tissue-engineered cartilage. Laryngoscope 119:62–66

    Article  Google Scholar 

  • Kirsch T, Swoboda B, Nah H (2000) Activation of annexin II and V expression, terminal differentiation, mineralization and apoptosis in human osteoarthritic cartilage. Osteoarthr Cartil 8:294–302

    Article  Google Scholar 

  • Kitagawa F, Takei S, Imaizumi T, Tabata Y (2013) Chondrogenic differentiation of immortalized human mesenchymal stem cells on zirconia microwell substrata. Tissue Eng Part C Methods 19:438–448

    Article  Google Scholar 

  • Klein TJ, Malda J, Sah RL, Hutmacher DW (2009) Tissue engineering of articular cartilage with biomimetic zones. Tissue Eng Part B Rev 15:143–157

    Article  Google Scholar 

  • Klockars T, Rautio J (2009) Embryology and epidemiology of microtia. Facial Plast Surg 25:145–148

    Article  Google Scholar 

  • Kock L, van Donkelaar CC, Ito K (2012) Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res 347:613–627

    Article  Google Scholar 

  • Koga H, Muneta T, Nagase T, Nimura A, Y-J J, Mochizuki T, Sekiya I (2008) Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res 333:207–215

    Article  Google Scholar 

  • Koh Y-G, Choi Y-J (2012) Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. Knee 19:902–907

    Article  Google Scholar 

  • Koji Yokoyama, Makoto Ikeya, Katsutsugu Umeda, Hirotsugu Oda, Seishiro Nodomi, Akira Nasu, Yoshihisa Matsumoto, Kazushi Izawa, Kazuhiko Horigome, Toshimasa Kusaka, Takayuki Tanaka, Megumu K. Saito, Takahiro Yasumi, Ryuta Nishikomori, Osamu Ohara, Naoki Nakayama, Tatsutoshi Nakahata, Toshio Heike, Junya Toguchida, (2015) Enhanced Chondrogenesis of Induced Pluripotent Stem Cells From Patients With Neonatal-Onset Multisystem Inflammatory Disease Occurs via the Caspase 1-Independent cAMP/Protein Kinase A/CREB Pathway. Arthritis & Rheumatology 67 (1):302–314

    Google Scholar 

  • Kokenyesi R, Tan L, Robbins JR, Goldring MB (2000) Proteoglycan production by immortalized human chondrocyte cell lines cultured under conditions that promote expression of the differentiated phenotype. Arch Biochem Biophys 383(1):79–90

    Article  Google Scholar 

  • Kolettas E, Buluwela L, Bayliss MT, Muir HI (1995) Expression of cartilage-specific molecules is retained on long-term culture of human articular chondrocytes. J Cell Sci 108(Pt 5):1991–1999

    Google Scholar 

  • Knutsen G, Drogset JO, Engebretsen L, Grøntvedt T, Isaksen V, Ludvigsen TC, Roberts S, Solheim E, Strand T, Johansen O (2007) A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 89:2105–2112

    Google Scholar 

  • Kon E, Roffi A, Filardo G, Tesei G, Marcacci M (2015) Scaffold-based cartilage treatments: with or without cells? A systematic review of preclinical and clinical evidence. Arthroscopy 31:767–775

    Article  Google Scholar 

  • Koyama E, Shibukawa Y, Nagayama M, Sugito H, Young B, Yuasa T, Okabe T, Ochiai T, Kamiya N, Rountree RB, Kingsley DM, Iwamoto M, Enomoto-Iwamoto M, Pacifici M (2008) A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol 316:62–73

    Article  Google Scholar 

  • Kremer A, Ribitsch I, Reboredo J, Dürr J, Egerbacher M, Jenner F, Walles H (2017) Three-dimensional Coculture of meniscal cells and mesenchymal stem cells in collagen type I hydrogel on a small intestinal matrix-a pilot study toward equine meniscus tissue engineering. Tissue Eng Part A 23(9–10):390–402

    Article  Google Scholar 

  • Kuroda R, Ishida K, Matsumoto T, Akisue T, Fujioka H, Mizuno K, Ohgushi H, Wakitani S, Kurosaka M (2007) Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthr Cartil 15:226–231

    Article  Google Scholar 

  • Kusuhara H, Isogai N, Enjo M, Otani H, Ikada Y, Jacquet R et al (2009) Tissue engineering a model for the human ear: assessment of size, shape, morphology, and gene expression following seeding of different chondrocytes. Wound Repair Regen 17:136–146

    Article  Google Scholar 

  • Lamo-Espinosa JM, Mora G, Blanco JF, Granero-Moltó F, Nuñez-Córdoba JM, Sánchez-Echenique C, Bondía JM, Aquerreta JD, Andreu EJ, Ornilla E, Villarón EM, Valentí-Azcárate A, Sánchez-Guijo F, del Cañizo MC, Valentí-Nin JR, Prósper F (2016) Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: multicenter randomized controlled clinical trial (phase I/II). J Transl Med 14:246

    Article  Google Scholar 

  • Lamplot JD, Liu B, Yin L, Zhang W, Wang Z, Luther G, Wagner E, Li R, Nan G, Shui W, Yan Z, Rames R, Deng F, Zhang H, Liao Z, Liu W, Zhang J, Zhang Z, Zhang Q, Ye J, Deng Y, Qiao M, Haydon RC, Luu HH, Angeles J, Shi LL, He TC, Ho SH (2015) Reversibly immortalized mouse articular chondrocytes acquire long-term proliferative capability while retaining Chondrogenic phenotype. Cell Transplant 24:1053–1066

    Article  Google Scholar 

  • Larribere L, Wu H, Novak D, Galach M, Bernhardt M, Orouji E, Weina K, Knappe N, Sachpekidis C, Umansky L, Beckhove P, Umansky V, De Schepper S, Kaufmann D, Ballotti R, Bertolotto C, Utikal J (2015) NF1 loss induces senescence during human melanocyte differentiation in an iPSC-based model. Pigment Cell Melanoma Res 28(4):407–416

    Article  Google Scholar 

  • Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ, Ku S, Martynova M, Semechkin R, Galat V, Gottesfeld J, Izpisua Belmonte JC, Murry C, Keirstead HS, Park HS, Schmidt U, Laslett AL, Muller FJ, Nievergelt CM, Shamir R, Loring JF (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8(1):106–118

    Article  Google Scholar 

  • Lee TS, Lim SY, Pyon JK, Mun GH, Bang SI, KS O (2010) Secondary revisions due to unfavourable results after microtia reconstruction. J Plast Reconstr Aesthet Surg 63:940–946

    Article  Google Scholar 

  • Lee J, Abdeen AA, Zhang D, Kilian KA (2013) Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition. Biomaterials 34:8140–8148

    Article  Google Scholar 

  • Lee KBL, Hui JHP, Song IC, Ardany L, Lee EH (2007) Injectable mesenchymal stem cell therapy for large cartilage defects--a porcine model. Stem Cells 25:2964–2971

    Article  Google Scholar 

  • Lefebvre V, Smits P (2005) Transcriptional control of chondrocyte fate and differentiation. Birth Defect Res C 75:200–212

    Article  Google Scholar 

  • Lefebvre V, Garofalo S, de Crombrugghe B (1995) Type X collagen gene expression in mouse chondrocytes immortalized by a temperature-sensitive simian virus 40 large tumor antigen. J Cell Biol 128(1–2):239–245

    Article  Google Scholar 

  • Leijten J, Georgi N, Moreira Teixeira L, van Blitterswijk CA, Post JN, Karperien M (2014) Metabolic programming of mesenchymal stromal cells by oxygen tension directs chondrogenic cell fate. Proc Natl Acad Sci U S A 111:13954–13959

    Article  Google Scholar 

  • Leucht P, Kim JB, Amasha R, James AW, Girod S, Helms JA (2008) Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration. Development 135:2845–2854

    Article  Google Scholar 

  • Li Y, Tew SR, Russell AM, Gonzalez KR, Hardingham TE, Hawkins RE (2004) Transduction of passaged human articular chondrocytes with adenoviral, retroviral, and lentiviral vectors and the effects of enhanced expression of SOX9. Tissue Eng 10(3–4):575–584

    Article  Google Scholar 

  • Liese J, Marzahn U, El SK, Pruss A, Haisch A, Stoelzel K (2013) Cartilage tissue engineering of nasal septal chondrocyte-macroaggregates in human demineralized bone matrix. Cell Tissue Bank 14:255–266

    Article  Google Scholar 

  • Lim HC, Bae JH, Song SH, Park YE, Kim SJ (2012) Current treatments of isolated articular cartilage lesions of the knee achieve similar outcomes. Clin Orthop Relat Res 470:2261–2267

    Article  Google Scholar 

  • Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471(7336):68–73

    Article  Google Scholar 

  • Lolli A, Narcisi R, Lambertini E, Penolazzi L, Angelozzi M, Kops N, Gasparini S, van Osch GJVM, Piva R (2016) Silencing of Antichondrogenic MicroRNA-221 in human mesenchymal stem cells promotes cartilage repair in vivo. Stem Cells 34:1801–1811

    Article  Google Scholar 

  • Locklin RM, Riggs BL, Hicok KC, Horton HF, Byrne MC, Khosla S (2001) Assessment of gene regulation by bone morphogenetic protein 2 in human marrow stromal cells using gene array technology. J Bone Miner Res 16:2192–2204

    Article  Google Scholar 

  • Loeser RF, Sadiev S, Tan L, Goldring MB (2000) Integrin expression by primary and immortalized human chondrocytes: evidence of a differential role for alpha1beta1 and alpha2beta1 integrins in mediating chondrocyte adhesion to types II and VI collagen. Osteoarthr Cartil 8(2):96–105

    Article  Google Scholar 

  • Lotz M, Loeser RF (2012) Effects of aging on articular cartilage homeostasis. Bone 51(2):241–248

    Article  Google Scholar 

  • Luan Y, Kong L, Howell DR, Ilalov K, Fajardo M, Bai XH, Di Cesare PE, Goldring MB, Abramson SB, Liu CJ (2008) Inhibition of ADAMTS-7 and ADAMTS-12 degradation of cartilage oligomeric matrix protein by alpha-2-macroglobulin. Osteoarthr Cartil 16:1413–1420

    Article  Google Scholar 

  • Madry H, Orth P, Cucchiarini M (2011) Gene therapy for cartilage repair. Cartilage 2(3):201–225

    Article  Google Scholar 

  • Maes C, Kobayashi T, Selig MK, Torrekens S, Roth SI, Mackem S, Carmeliet G, Kronenberg HM (2010) Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell 19:329–344

    Article  Google Scholar 

  • Makris EA, Hadidi P, Athanasiou KA (2011) The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 32(30):7411–7431

    Article  Google Scholar 

  • Malda J, Kreijveld E, Temenoff JS, van Blitterswijk CA, Riesle J (2003) Expansion of human nasal chondrocytes on macroporous microcarriers enhances redifferentiation. Biomaterials 24:5153–5161

    Article  Google Scholar 

  • Mallein-Gerin F, Ruggiero F, Quinn TM, Bard F, Grodzinsky AJ, Olsen BR, van der Rest M (1995) Analysis of collagen synthesis and assembly in culture by immortalized mouse chondrocytes in the presence or absence of alpha 1(IX) collagen chains. Exp Cell Res 219:257–265

    Article  Google Scholar 

  • Matthies N-F, Mulet-Sierra A, Jomha NM, Adesida AB (2012) Matrix formation is enhanced in co-cultures of human meniscus cells with bone marrow stromal cells. J Tissue Eng Regen Med 7(12):965–973

    Article  Google Scholar 

  • Mauck RL, Martinez-Diaz GJ, Yuan X, Tuan RS (2007) Regional multilineage differentiation potential of meniscal fibrochondrocytes: implications for meniscus repair. Anat Rec (Hoboken) 290:48–58

    Article  Google Scholar 

  • Marquass B, Schulz R, Hepp P, Zscharnack M, Aigner T, Schmidt S, Stein F, Richter R, Osterhoff G, Aust G, Josten C, Bader A (2011) Matrix-associated implantation of predifferentiated mesenchymal stem cells versus articular chondrocytes: in vivo results of cartilage repair after 1 year. Am J Sports Med 39:1401–1412

    Article  Google Scholar 

  • Marsano A, Medeiros da Cunha CM, Ghanaati S, Gueven S, Centola M, Tsaryk R, Barbeck M, Stuedle C, Barbero A, Helmrich U, Schaeren S, Kirkpatrick JC, Banfi A, Martin I (2016) Spontaneous in vivo Chondrogenesis of bone marrow-derived mesenchymal progenitor cells by blocking vascular endothelial growth factor Signaling. Stem Cells Transl Med sctm 5:1730–1738

    Article  Google Scholar 

  • Martin I, Muraglia A, Campanile G, Cancedda R, Quarto R (1997) Fibroblast growth factor-2 supports ex vivo expansion and maintenance of osteogenic precursors from human bone marrow. Endocrinology 138:4456–4462

    Article  Google Scholar 

  • Mataga N, Tamura M, Yanai N, Shinomura T, Kimata K, Obinata M, Noda M (1996) Establishment of a novel chondrocyte-like cell line derived from transgenic mice harboring the temperature-sensitive simian virus 40 large T-antigen. J Bone Min Res 11:1646–1654

    Article  Google Scholar 

  • McIntyre DC, Rakshit S, Yallowitz AR, Loken L, Jeannotte L, Capecchi MR, Wellik DM (2007) Hox patterning of the vertebrate rib cage. Development 134:2981–2989

    Article  Google Scholar 

  • McIlwraith CW, Frisbie DD, Rodkey WG, Kisiday JD, Werpy NM, Kawcak CE, Steadman JR (2011) Evaluation of intra-articular mesenchymal stem cells to augment healing of microfractured chondral defects. Arthroscopy 27:1552–1561

    Article  Google Scholar 

  • Mendelson A, Frenette PS (2014) Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med 20:833–846

    Article  Google Scholar 

  • Mihaela Crisan, Solomon Yap, Louis Casteilla, Chien-Wen Chen, Mirko Corselli, Tea Soon Park, Gabriella Andriolo, Bin Sun, Bo Zheng, Li Zhang, Cyrille Norotte, Pang-Ning Teng, Jeremy Traas, Rebecca Schugar, Bridget M. Deasy, Stephen Badylak, Hans-Jörg Bűhring, Jean-Paul Giacobino, Lorenza Lazzari, Johnny Huard, Bruno Péault, (2008) A Perivascular Origin for Mesenchymal Stem Cells in Multiple Human Organs. Cell Stem Cell 3 (3):301–313

    Google Scholar 

  • Miller EJ (1976) Biochemical characteristics and biological significance of the genetically-distinct collagens. Mol Cell Biochem 13:165–192

    Article  Google Scholar 

  • Minoru Okada, Shiro Ikegawa, Miho Morioka, Akihiro Yamashita, Atsushi Saito, Hideaki Sawai, Jun Murotsuki, Hirofumi Ohashi, Toshio Okamoto, Gen Nishimura, Kazunori Imaizumi, Noriyuki Tsumaki, (2015) Modeling type II collagenopathy skeletal dysplasia by directed conversion and induced pluripotent stem cells. Human Molecular Genetics 24 (2):299–313

    Google Scholar 

  • Mitsuru Mizuno, Hisako Katano, Koji Otabe, Keiichiro Komori, Yukie Matsumoto, Shizuka Fujii, Nobutake Ozeki, Kunikazu Tsuji, Hideyuki Koga, Takeshi Muneta, Akifumi Matsuyama, Ichiro Sekiya, (2015) Platelet-derived growth factor (PDGF)-AA/AB in human serum are potential indicators of the proliferative capacity of human synovial mesenchymal stem cells. Stem Cell Research & Therapy 6 (1)

    Google Scholar 

  • Mumme M, Steinitz A, Nuss KM, Klein K, Feliciano S, Kronen P, Jakob M, von Rechenberg B, Martin I, Barbero A, Pelttari K (2016a) Regenerative potential of tissue-engineered nasal chondrocytes in goat articular cartilage defects. Tissue Eng Part A 22:1286–1295

    Article  Google Scholar 

  • Mumme M, Barbero A, Miot S, Wixmerten A, Feliciano S, Wolf F, Asnaghi MA, Baumhoer D, Bieri O, Kretzschmar M, Pagenstert G, Haug M, Schaefer DJ, Martin I, Jakob M (2016b) Nasal chondrocytes-based engineered autologous cartilage tissue for the repair of articular cartilage defects: an observational first-in-human trial. Lancet 388:1985–1994

    Article  Google Scholar 

  • Mundy C, Yasuda T, Kinumatsu T, Yamaguchi Y, Iwamoto M, Enomoto-Iwamoto M, Koyama E, Pacifici M (2011) Synovial joint formation requires local Ext1 expression and heparan sulfate production in developing mouse embryo limbs and spine. Dev Biol 351:70–81

    Article  Google Scholar 

  • Muraglia A, Todeschi MR, Papait A, Poggi A, Spanò R, Strada P, Cancedda R, Mastrogiacomo M (2015) Combined platelet and plasma derivatives enhance proliferation of stem/progenitor cells maintaining their differentiation potential. Cytotherapy 17:1793–1806

    Article  Google Scholar 

  • Muraglia A, Cancedda R, Quarto R (2000) Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci 113(Pt 7):1161–1166

    Google Scholar 

  • Murphy JM, Fink DJ, Hunziker EB, Barry FP (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48:3464–3474

    Article  Google Scholar 

  • Naumann A, Rotter N, Bujia J, Aigner J (1998) Tissue engineering of autologous cartilage transplants for rhinology. Am J Rhinol 12:59–63

    Article  Google Scholar 

  • Nagai T, Sato M, Kutsuna T, Kokubo M, Ebihara G, Ohta N, Mochida J (2010) Intravenous administration of anti-vascular endothelial growth factor humanized monoclonal antibody bevacizumab improves articular cartilage repair. Arthritis Res Ther 12:R178

    Article  Google Scholar 

  • Nakata K, Shino K, Hamada M, Mae T, Miyama T, Shinjo H, Horibe S, Tada K, Ochi T, Yoshikawa H (2001) Human meniscus cell: characterization of the primary culture and use for tissue engineering. Clin Orthop Relat Res 391:S208–S218

    Article  Google Scholar 

  • Nam HY, Karunanithi P, Loo WC, Naveen S, Chen H, Hussin P, Chan L, Kamarul T (2013) The effects of staged intra-articular injection of cultured autologous mesenchymal stromal cells on the repair of damaged cartilage: a pilot study in caprine model. Arthritis Res Ther 15:R129

    Article  Google Scholar 

  • Narcisi R, Cleary MA, Brama PAJ, Hoogduijn MJ, Tüysüz N, Berge ten D, van Osch GJVM (2015) Long-term expansion, enhanced chondrogenic potential, and suppression of endochondral ossification of adult human MSCs via WNT signaling modulation. Stem Cell Reports 4:459–472

    Article  Google Scholar 

  • Nazempour A, Quisenberry CR, Van Wie BJ, Abu-Lail NI (2016) Nanomechanics of engineered articular cartilage: synergistic influences of transforming growth factor-beta 3 and oscillating pressure. J Nanosci Nanotechnol 16:3136–3145

    Article  Google Scholar 

  • Nazor KL, Altun G, Lynch C, Tran H, Harness JV, Slavin I, Garitaonandia I, Muller FJ, Wang YC, Boscolo FS, Fakunle E, Dumevska B, Lee S, Park HS, Olee T, D’Lima DD, Semechkin R, Parast MM, Galat V, Laslett AL, Schmidt U, Keirstead HS, Loring JF, Laurent LC (2012) Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. Cell Stem Cell 10(5):620–634

    Article  Google Scholar 

  • Nevo Z, Horwitz AL, Dorfmann A (1972) Synthesis of chondromucoprotein by chondrocytes in suspension culture. Dev Biol 28:219–228

    Article  Google Scholar 

  • Ning Ma, Baojian Liao, Hui Zhang, Linli Wang, Yongli Shan, Yanting Xue, Ke Huang, Shubin Chen, Xiaoxiao Zhou, Yang Chen, Duanqing Pei, Guangjin Pan, (2013) Transcription Activator-like Effector Nuclease (TALEN)-mediated Gene Correction in Integration-free β-Thalassemia Induced Pluripotent Stem Cells. Journal of Biological Chemistry 288 (48):34671–34679

    Google Scholar 

  • Nishida Y, Knudson CB, Eger W, Kuettner KE, Knudson W (2000) Osteogenic protein 1 stimulates cell-associated matrix assembly by normal human articular chondrocytes - up-regulation of hyaluronan synthase,CD44, and aggrecan. Arthritis Rheum 43:206–214

    Article  Google Scholar 

  • Ni Y, Jiang Y, Wen J, Shao Z, Chen X, Sun S, Yu H, Li W (2014) Construction of a functional silk-based biomaterial complex with immortalized chondrocytes in vivo. J Biomed Mater Res A 102:1071–1078

    Article  Google Scholar 

  • Niemeyer P, Porichis S, Steinwachs M, Erggelet C, Kreuz PC, Schmal H, Uhl M, Ghanem N, Südkamp NP, Salzmann G (2014) Long-term outcomes after first-generation autologous chondrocyte implantation for cartilage defects of the knee. Am J Sports Med 42:150–157

    Article  Google Scholar 

  • Nieminen R, Korhonen R, Moilanen T, Clark AR, Moilanen E (2010) Aurothiomalate inhibits cyclooxygenase 2, matrix metalloproteinase 3, and interleukin-6 expression in chondrocytes by increasing MAPK phosphatase 1 expression and decreasing p38 phosphorylation: MAPK phosphatase 1 as a novel target for antirheumatic drugs. Arthritis Rheum 62:1650–1659

    Article  Google Scholar 

  • Norby DP, Malemud CJ, Sokoloff L (1977) Differences in the collagen types synthesized by lapine articular chondrocytes in spinner and monolayer culture. Arthritis Rheum 20:709–716

    Article  Google Scholar 

  • Nowlan NC, Sharpe J, Roddy KA, Prendergast PJ, Murphy P (2010) Mechanobiology of embryonic skeletal development: insights from animal models. Birth Defect Res C 90:203–213

    Article  Google Scholar 

  • Nuernberger S, Cyran N, Albrecht C, Redl H, Vécsei V, Marlovits S (2011) The influence of scaffold architecture on chondrocyte distribution and behavior in matrix-associated chondrocyte transplantation grafts. Biomaterials 32(4):1032–1040

    Article  Google Scholar 

  • Olivotto E, Borzi RM, Vitellozzi R, Pagani S, Facchini A, Battistelli M, Penzo M, Li X, Flamigni F, Li J, Falcieri E, Facchini A, Marcu KB (2008) Differential requirements for IKKalpha and IKKbeta in the differentiation of primary human osteoarthritic chondrocytes. Arthritis Rheum 58(1):227–239

    Article  Google Scholar 

  • Olivotto E, Otero M, Astolfi A, Platano D, Facchini A, Pagani S, Flamigni F, Facchini A, Goldring MB, Borzi RM, Marcu KB (2013) IKKalpha/CHUK regulates extracellular matrix remodeling independent of its kinase activity to facilitate articular chondrocyte differentiation. PLoS One 8(9):e73024

    Article  Google Scholar 

  • Olsen BR, Reginato AM, Wang W (2000) Bone Development. Annu Rev Cell Dev Biol 16:191–220

    Article  Google Scholar 

  • Orozco L, Munar A, Soler R, Alberca M, Soler F, Huguet M, Sentís J, Sánchez A, García-Sancho J (2013) Treatment of knee osteoarthritis with autologous mesenchymal stem cells. Transplantation 95:1535–1541

    Article  Google Scholar 

  • Osaki M, Tan L, Choy BK, Yoshida Y, Cheah KS, Auron PE, Goldring MB (2003) The TATA-containing core promoter of the type II collagen gene (COL2A1) is the target of interferon-gamma-mediated inhibition in human chondrocytes: requirement for Stat1 alpha, Jak1 and Jak2. Biochem J 369(Pt 1):103–115

    Article  Google Scholar 

  • Otero M, Favero M, Dragomir C, Hachem KE, Hashimoto K, Plumb DA, Goldring MB (2012a) Human chondrocyte cultures as models of cartilage-specific gene regulation. Methods Mol Biol 806:301–336

    Article  Google Scholar 

  • Otero M, Plumb DA, Tsuchimochi K, Dragomir CL, Hashimoto K, Peng H, Olivotto E, Bevilacqua M, Tan L, Yang Z, Zhan Y, Oettgen P, Li Y, Marcu KB, Goldring MB (2012b) E74-like factor 3 (ELF3) impacts on matrix metalloproteinase 13 (MMP13) transcriptional control in articular chondrocytes under proinflammatory stress. J Biol Chem 287:3559–3572

    Article  Google Scholar 

  • Oxford JT, Doege KJ, Horton WE Jr, Morris NP (1994) Characterization of type II and type XI collagen synthesis by an immortalized rat chondrocyte cell line (IRC) having a low level of type II collagen mRNA expression. Exp Cell Res 213:28–36

    Article  Google Scholar 

  • Oyajobi BO, Frazer A, Hollander AP, Graveley RM, Xu C, Houghton A, Hatton PV, Russell RG, Stringer BM (1998) Expression of type X collagen and matrix calcification in three-dimensional cultures of immortalized temperature-sensitive chondrocytes derived from adult human articular cartilage. J Bone Miner Res 13:432–442

    Article  Google Scholar 

  • Pacifici M, Koyama E, Iwamoto M (2005) Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defect Res C 75:237–248

    Article  Google Scholar 

  • Pacifici M, Koyama E, Shibukawa Y, Wu C, Tamamura Y, Enomoto-Iwamoto M, Iwamoto M (2006) Cellular and molecular mechanisms of synovial joint and articular cartilage formation. Ann N Y Acad Sci 1068:74–86

    Article  Google Scholar 

  • Panadero JA, Lanceros-Mendez S, Ribelles JLG (2016) Differentiation of mesenchymal stem cells for cartilage tissue engineering: individual and synergetic effects of three-dimensional environment and mechanical loading. Acta Biomater 33:1–12

    Article  Google Scholar 

  • Papadimitropoulos A, Piccinini E, Brachat S, Braccini A, Wendt D, Barbero A, Jacobi C, Martin I (2014) Expansion of human mesenchymal stromal cells from fresh bone marrow in a 3D scaffold-based system under direct perfusion. PLoS One 9:e102359

    Article  Google Scholar 

  • Park SS, Jin HR, Chi DH, Taylor RS (2004) Characteristics of tissue-engineered cartilage from human auricular chondrocytes. Biomaterials 25:2363–2369

    Article  Google Scholar 

  • Passaretti D, Silverman RP, Huang W, Kirchhoff CH, Ashiku S, Randolph MA, Yaremchuk MJ (2001) Cultured chondrocytes produce injectable tissue-engineered cartilage in hydrogel polymer. Tissue Eng 7:805–815

    Article  Google Scholar 

  • Patrick Cahan, George Q. Daley, (2013) Origins and implications of pluripotent stem cell variability and heterogeneity. Nature Reviews Molecular Cell Biology 14 (6):357–368

    Google Scholar 

  • Pazin DE, Gamer LW, Cox KA, Rosen V (2012) Molecular profiling of synovial joints: use of microarray analysis to identify factors that direct the development of the knee and elbow. Dev Dyn 241:1816–1826

    Article  Google Scholar 

  • Pei M, Solchaga LA, Seidel J, Zeng L, Vunjak-Novakovic G, Caplan AI, Freed LE (2002) Bioreactors mediate the effectiveness of tissue engineering scaffolds. FASEB J 16:1691–1694

    Article  Google Scholar 

  • Pelttari K, Pippenger B, Mumme M, Feliciano S, Scotti C, Mainil-Varlet P, Procino A, RB v, Schwamborn T, Jakob M, Cillo C, Barbero A, Martin I (2014) Adult human neural crest-derived cells for articular cartilage repair. Sci Transl Med 6:251ra119

    Article  Google Scholar 

  • Peng H, Tan L, Osaki M, Zhan Y, Ijiri K, Tsuchimochi K, Otero M, Wang H, Choy BK, Grall FT, Gu X, Libermann TA, Oettgen P, Goldring MB (2008) ESE-1 is a potent repressor of type II collagen gene (COL2A1) transcription in human chondrocytes. J Cell Physiol 215(2):562–573

    Article  Google Scholar 

  • Penuela L, Wolf F, Raiteri R, Wendt D, Martin I, Barbero A (2014) Atomic force microscopy to investigate spatial patterns of response to interleukin-1beta in engineered cartilage tissue elasticity. J Biomech 47:2157–2164

    Article  Google Scholar 

  • Peterson L, Vasiliadis HS, Brittberg M, Lindahl A (2010) Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med 38:1117–1124

    Article  Google Scholar 

  • Piera-Velazquez S, Jimenez SA, Stokes D (2002) Increased life span of human osteoarthritic chondrocytes by exogenous expression of telomerase. Arthritis Rheum 46(3):683–693

    Article  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  Google Scholar 

  • Pleumeekers MM, Nimeskern L, Koevoet WL, Kops N, Poublon RM, Stok KS, van Osch GJ (2014) The in vitro and in vivo capacity of culture-expanded human cells from several sources encapsulated in alginate to form cartilage. Eur Cell Mater 27:264–280. discussion 278–80:264–280

    Article  Google Scholar 

  • Pomerantseva I, Bichara DA, Tseng A, Cronce MJ, Cervantes TM, Kimura AM, Neville CM, Roscioli N, Vacanti JP, Randolph MA, Sundback CA (2016) Ear-shaped stable auricular cartilage engineered from extensively expanded chondrocytes in an immunocompetent experimental animal model. Tissue Eng Part A 22:197–207

    Article  Google Scholar 

  • Popko M, Bleys RL, De Groot JW, Huizing EH (2007) Histological structure of the nasal cartilages and their perichondrial envelope. I. The septal and lobular cartilage. Rhinology 45:148–152

    Google Scholar 

  • Quinn TM, Hunziker EB, Häuselmann HJ (2005) Variation of cell and matrix morphologies in articular cartilage among locations in the adult human knee. Osteoarthr Cartil 13:672–678

    Article  Google Scholar 

  • Quirici N, Soligo D, Bossolasco P, Servida F, Lumini C, Deliliers GL (2002) Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp Hematol 30:783–791

    Article  Google Scholar 

  • Rapko S, Parker A, Mortelliti C, Duguay S, Wolfe L (2010) OR15: novel identity and potency quality control assays for autologous chondrocyte implantation. Orthop Proc 92-B(Suppl):204

    Google Scholar 

  • Ray A, Singh PN, Sohaskey ML, Harland RM, Bandyopadhyay A (2015) Precise spatial restriction of BMP signaling is essential for articular cartilage differentiation. Development 142:1169–1179

    Article  Google Scholar 

  • Robbins JR, Thomas B, Tan L, Choy B, Arbiser JL, Berenbaum F, Goldring MB (2000) Immortalized human adult articular chondrocytes maintain cartilage-specific phenotype and responses to interleukin-1beta. Arthritis Rheum 43:2189–2201

    Article  Google Scholar 

  • Rodriguez A, Cao YL, Ibarra C, Pap S, Vacanti M, Eavey RD, Vacanti CA (1999) Characteristics of cartilage engineered from human pediatric auricular cartilage. Plast Reconstr Surg 103:1111–1119

    Article  Google Scholar 

  • Roger Croutze, Nadr Jomha, Hasan Uludag, Adetola Adesida, (2013) Matrix forming characteristics of inner and outer human meniscus cells on 3D collagen scaffolds under normal and low oxygen tensions. BMC Musculoskeletal Disorders 14 (1)

    Google Scholar 

  • Rotter N, Bonassar LJ, Tobias G, Lebl M, Roy AK, Vacanti CA (2002) Age dependence of biochemical and biomechanical properties of tissue-engineered human septal cartilage. Biomaterials 23:3087–3094

    Article  Google Scholar 

  • Roy R, Kohles SS, Zaporojan V, Peretti GM, Randolph MA, Xu J, Bonassar LJ (2004) Analysis of bending behavior of native and engineered auricular and costal cartilage. J Biomed Mater Res A 68:597–602

    Article  Google Scholar 

  • Saadeh PB, Mehrara BJ, Steinbrech DS, Dudziak ME, Greenwald JA, Luchs JS, Spector JA, Ueno H, Gittes GK, Longaker MT (1999) Human cartilage engineering: chondrocyte extraction, proliferation, and characterization for construct development. Ann Plast Surg 42:509–513

    Article  Google Scholar 

  • Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336

    Article  Google Scholar 

  • Sah RL, Chen AC, Grodzinsky AJ, Trippel SB (1994) Differential-effects of bfgf and igf-i on matrix metabolism in calf and adult bovine cartilage explants. Arch Biochem Biophys 308:137–147

    Article  Google Scholar 

  • Saim AB, Cao Y, Weng Y, Chang CN, Vacanti MA, Vacanti CA, Eavey RD (2000) Engineering autogenous cartilage in the shape of a helix using an injectable hydrogel scaffold. Laryngoscope 110:1694–1697

    Article  Google Scholar 

  • Saliken DJ, Mulet-Sierra A, Jomha NM, Adesida AB (2012) Decreased hypertrophic differentiation accompanies enhanced matrix formation in co-cultures of outer meniscus cells with bone marrow mesenchymal stromal cells. Arthritis Res Ther 14:R153

    Article  Google Scholar 

  • Saris D, Price A, Widuchowski W, Bertrand-Marchand M, Caron J, Drogset JO, Emans P, Podskubka A, Tsuchida A, Kili S, Levine D, Brittberg M (2014) SUMMIT study group. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: two year follow-up of a prospective randomized trial. Am J Sports Med 42:1384–1394

    Article  Google Scholar 

  • Sato M, Uchida K, Nakajima H, Miyazaki T, Guerrero AR, Watanabe S, Roberts S, Baba H (2012) Direct transplantation of mesenchymal stem cells into the knee joints of Hartley strain guinea pigs with spontaneous osteoarthritis. Arthritis Res Ther 14:R3

    Article  Google Scholar 

  • Saw K-Y, Hussin P, Loke S-C, Azam M, Chen H-C, Tay Y-G, Low S, Wallin K-L, Ragavanaidu K (2009) Articular cartilage regeneration with autologous marrow aspirate and hyaluronic acid: an experimental study in a goat model. Arthroscopy 25:1391–1400

    Article  Google Scholar 

  • Sawada R, Ito T, Tsuchiya T (2006) Changes in expression of genes related to cell proliferation in human mesenchymal stem cells during in vitro culture in comparison with cancer cells. J Artif Organs 9:179–184

    Article  Google Scholar 

  • Schachar NS, Cucheran DJ, McGann LE, Novak KA, Frank CB (1994) Metabolic-activity of bovine articular-cartilage during refrigerated storage. J Orthop Res 12:15–20

    Article  Google Scholar 

  • Schneider U, Andereya S (2003) First results of a prospective randomized clinical trial on traditional chondrocyte transplantation vs CaReS-technology. Z Orthop Ihre Grenzgeb 141:496–497

    Google Scholar 

  • Schultz-Coulon HJ, Eckermeier L (1976) Postnatal growth of nasal septum. Acta Otolaryngol 24:283–286

    Google Scholar 

  • Scott MA, Levi B, Askarinam A, Nguyen A, Rackohn T, Ting K, Soo C, James AW (2012) Brief review of models of ectopic bone formation. Stem Cells Dev 21:655–667

    Article  Google Scholar 

  • Scotti C, Osmokrovic A, Wolf F, Miot S, Peretti GM, Barbero A, Martin I (2012) Response of human engineered cartilage based on articular or nasal chondrocytes to interleukin-1beta and low oxygen. Tissue Eng Part A 18:362–372

    Article  Google Scholar 

  • Sevin K, Askar I, Saray A, Yormuk E (2000) Exposure of high-density porous polyethylene (Medpor) used for contour restoration and treatment. Br J Oral Maxillofac Surg 38:44–49

    Article  Google Scholar 

  • Shafiee A, Kabiri M, Ahmadbeigi N, Yazdani SO, Mojtahed M, Amanpour S, Soleimani M (2011) Nasal septum-derived multipotent progenitors: a potent source for stem cell-based regenerative medicine. Stem Cells Dev 20:2077–2091

    Article  Google Scholar 

  • Shang J, Liu H, Li J, Zhou Y (2014) Roles of hypoxia during the chondrogenic differentiation of mesenchymal stem cells. Curr Stem Cell Res Ther 9:141–147

    Article  Google Scholar 

  • Shieh SJ, Terada S, Vacanti JP (2004) Tissue engineering auricular reconstruction: in vitro and in vivo studies. Biomaterials 25:1545–1557

    Article  Google Scholar 

  • Shimada H, Otero M, Tsuchimochi K, Yamasaki S, Sakakima H, Matsuda F, Sakasegawa M, Setoguchi T, Xu L, Goldring MB, Tanimoto A, Komiya S, Ijiri K (2016) CCAAT/enhancer binding protein beta (C/EBPbeta) regulates the transcription of growth arrest and DNA damage-inducible protein 45 beta (GADD45beta) in articular chondrocytes. Pathol Res Pract 212:302–309

    Article  Google Scholar 

  • Shwartz Y, Viukov S, Krief S, Zelzer E (2016) Joint development involves a continuous influx of Gdf5-positive cells. Cell Rep 15:2577–2587

    Article  Google Scholar 

  • Siegel NS, Gliklich RE, Taghizadeh F, Chang Y (2000) Outcomes of septoplasty. Otolaryngol Head Neck Surg 122:228–232

    Article  Google Scholar 

  • Singer NG, Caplan AI (2011) Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol 6:457–478

    Article  Google Scholar 

  • Solchaga LA, Penick K, Goldberg VM, Caplan AI, Welter JF (2010) Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells. Tissue Eng Part A 16:1009–1019

    Article  Google Scholar 

  • Soler R, Orozco L, Munar A, Huguet M, López R, Vives J, Coll R, Codinach M, Garcia-Lopez J (2016) Final results of a phase I-II trial using ex vivo expanded autologous mesenchymal stromal cells for the treatment of osteoarthritis of the knee confirming safety and suggesting cartilage regeneration. Knee 23:647–654

    Article  Google Scholar 

  • Solvig Diederichs, Rocky S. Tuan, (2014) Functional Comparison of Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Cells and Bone Marrow-Derived Mesenchymal Stromal Cells from the Same Donor. Stem Cells and Development 23 (14):1594–1610

    Google Scholar 

  • Somoza RA, Welter JF, Correa D, Caplan AI (2014) Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Eng Part B Rev 20:596–608

    Article  Google Scholar 

  • Spalding T, Almqvist F, Brittberg M, Cole B, Farr J , Hosea T, Imhoff A, Mandelbaum B, Nehrer S, Richmond J (2011) The CAIS project; European multicentre randomised controlled pilot study of a one stage procedure for cell based cartilage repair. Orthopaedic Proceedings. 93-B no. SUPP III 292

    Google Scholar 

  • Später D, Hill TP, Gruber M, Hartmann C (2006) Role of canonical Wnt-signalling in joint formation. Eur Cell Mater 12:71–80

    Article  Google Scholar 

  • Sridhar BV, Doyle NR, Randolph MA, Anseth KS (2014) Covalently tethered TGF-β1 with encapsulated chondrocytes in a PEG hydrogel system enhances extracellular matrix production. J Biomed Mater Res A 102:4464–4472

    Google Scholar 

  • Steimberg N, Viengchareun S, Biehlmann F, Guenal I, Mignotte B, Adolphe M, Thenet S (1999) SV40 large T antigen expression driven by col2a1 regulatory sequences immortalizes articular chondrocytes but does not allow stabilization of type II collagen expression. Exp Cell Res 249(2):248–259

    Article  Google Scholar 

  • Steward AJ, Kelly DJ, Wagner DR (2016) Purinergic Signaling regulates the transforming growth factor-β3-induced Chondrogenic response of mesenchymal stem cells to hydrostatic pressure. Tissue Eng Part A 22:831–839

    Article  Google Scholar 

  • Storm EE, Kingsley DM (1996) Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. Development 122:3969–3979

    Google Scholar 

  • Surridge AK, Rodgers UR, Swingler TE, Davidson RK, Kevorkian L, Norton R, Waters JG, Goldring MB, Parker AE, Clark IM (2009) Characterization and regulation of ADAMTS-16. Matrix Biol 28(7):416–424

    Article  Google Scholar 

  • Takazawa Y, Nifuji A, Mataga N, Yamauchi Y, Kurosawa H, Noda M (1999) Articular cartilage cells immortalized by a temperature sensitive mutant of SV40 large T antigen survive and form cartilage tissue in articular cartilage environment. J Cell Biochem 75(2):338–345

    Article  Google Scholar 

  • Takigawa M, Pan HO, Kinoshita A, Tajima K, Takano Y (1991) Establishment from a human chondrosarcoma of a new immortal cell line with high tumorigenicity in vivo, which is able to form proteoglycan-rich cartilage-like nodules and to respond to insulin in vitro. Int J Cancer 48:717–725

    Article  Google Scholar 

  • Tan L, Peng H, Osaki M, Choy BK, Auron PE, Sandell LJ, Goldring MB (2003) Egr-1 mediates transcriptional repression of COL2A1 promoter activity by interleukin-1beta. J Biol Chem 278(20):17688–17700

    Article  Google Scholar 

  • Tan Y, Zhang Y, Pei M (2010) Meniscus reconstruction through coculturing meniscus cells with synovium-derived stem cells on small intestine submucosa – a pilot study to engineer meniscus tissue constructs. Tissue Eng Part A 16:67–79

    Article  Google Scholar 

  • Tavassoli M, Crosby WH (1968) Transplantation of marrow to extramedullary sites. Science 161:54–56

    Article  Google Scholar 

  • Tay AG, Farhadi J, Suetterlin R, Pierer G, Heberer M, Martin I (2004) Cell yield, proliferation, and postexpansion differentiation capacity of human ear, nasal, and rib chondrocytes. Tissue Eng 10:762–770

    Article  Google Scholar 

  • Tenneille E Ludwig, Veit Bergendahl, Mark E Levenstein, Junying Yu, Mitchell D Probasco, James A Thomson, (2006) Feeder-independent culture of human embryonic stem cells. Nature Methods 3 (8):637–646

    Google Scholar 

  • Teo BJX, Buhary K, Tai B-C, Hui JH (2013) Cell-based therapy improves function in adolescents and young adults with patellar osteochondritis dissecans. Clin Orthop Relat Res 471:1152–1158

    Article  Google Scholar 

  • Terada S, Fuchs JR, Yoshimoto H, Fauza DO, Vacanti JP (2005) In vitro cartilage regeneration from proliferated adult elastic chondrocytes. Ann Plast Surg 55:196–201

    Article  Google Scholar 

  • Tew SR, Li Y, Pothacharoen P, Tweats LM, Hawkins RE, Hardingham TE (2005) Retroviral transduction with SOX9 enhances re-expression of the chondrocyte phenotype in passaged osteoarthritic human articular chondrocytes. Osteoarthr Cartil 13:80–89

    Article  Google Scholar 

  • Tew SR, Murdoch AD, Rauchenberg RP, Hardingham TE (2008) Cellular methods in cartilage research: primary human chondrocytes in culture and chondrogenesis in human bone marrow stem cells. Methods 45:2–9

    Article  Google Scholar 

  • Tew SR, Peffers MJ, McKay TR, Lowe ET, Khan WS, Hardingham TE, Clegg PD (2009) Hyperosmolarity regulates SOX9 mRNA posttranscriptionally in human articular chondrocytes. Am J Phys Cell Phys 297:C898–C906

    Article  Google Scholar 

  • Ting V, Sims CD, Brecht LE, McCarthy JG, Kasabian AK, Connelly PR, Elisseeff J, Gittes GK, Longaker MT (1998) In vitro prefabrication of human cartilage shapes using fibrin glue and human chondrocytes. Ann Plast Surg 40:413–420. discussion 20–21

    Article  Google Scholar 

  • Thenet S, Benya PD, Demignot S, Feunteun J, Adolphe M (1992) SV40-immortalization of rabbit articular chondrocytes: alteration of differentiated functions. J Cell Physiol 150:158–167

    Article  Google Scholar 

  • Thomas B, Thirion S, Humbert L, Tan L, Goldring MB, Bereziat G, Berenbaum F (2002) Differentiation regulates interleukin-1beta-induced cyclo-oxygenase-2 in human articular chondrocytes: role of p38 mitogen-activated protein kinase. Biochem J 362(Pt 2):367–373

    Article  Google Scholar 

  • Thomson JA, Embryonic Stem Cell Lines Derived from Human Blastocysts. Science 282 (5391):1145–1147

    Google Scholar 

  • Toegel S, Wu SQ, Piana C, Unger FM, Wirth M, Goldring MB, Gabor F, Viernstein H (2008) Comparison between chondroprotective effects of glucosamine, curcumin, and diacerein in IL-1beta-stimulated C-28/I2 chondrocytes. Osteoarthr Cartil 16:1205–1212

    Article  Google Scholar 

  • Toghraie F, Razmkhah M, Gholipour MA, Faghih Z, Chenari N, Torabi Nezhad S, Nazhvani Dehghani S, Ghaderi A (2012) Scaffold-free adipose-derived stem cells (ASCs) improve experimentally induced osteoarthritis in rabbits. Arch Iran Med 15:495–499

    Google Scholar 

  • Toghraie FS, Chenari N, Gholipour MA, Faghih Z, Torabinejad S, Dehghani S, Ghaderi A (2011) Treatment of osteoarthritis with infrapatellar fat pad derived mesenchymal stem cells in rabbit. Knee 18:71–75

    Article  Google Scholar 

  • Tormin A, Li O, Brune JC, Walsh S, Schütz B, Ehinger M, Ditzel N, Kassem M, Scheding S (2011) CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood 117:5067–5077

    Article  Google Scholar 

  • Tseng A, Pomerantseva I, Cronce MJ, Kimura AM, Neville CM, Randolph MA, Vacanti JP, Sundback CA (2014) Extensively expanded auricular chondrocytes form Neocartilage in vivo. Cartilage 5:241–251

    Article  Google Scholar 

  • Tsutsumi S, Shimazu A, Miyazaki K, Pan H, Koike C, Yoshida E, Takagishi K, Kato Y (2001) Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun 288:413–419

    Article  Google Scholar 

  • Turner M, Leslie S, Martin NG, Peschanski M, Rao M, Taylor CJ, Trounson A, Turner D, Yamanaka S, Wilmut I (2013) Toward the development of a global induced pluripotent stem cell library. Cell Stem Cell 13(4):382–384

    Article  Google Scholar 

  • Ulrich-Vinther M, Maloney MD, Goater JJ, Soballe K, Goldring MB, O’Keefe RJ, Schwarz EM (2002) Light-activated gene transduction enhances adeno-associated virus vector-mediated gene expression in human articular chondrocytes. Arthritis Rheum 46(8):2095–2104

    Article  Google Scholar 

  • Upton ML, Chen J, Setton LA (2006) Region-specific constitutive gene expression in the adult porcine meniscus. J Orthop Res 24:1562–1570

    Article  Google Scholar 

  • Vanlauwe J, Saris DB, Victor J, Almqvist KF, Bellemans J, Luyten FP, TIG/ACT/01/2000&EXT Study Group (2011) Five-year outcome of characterized chondrocyte implantation versus microfracture for symptomatic cartilage defects of the knee: early treatment matters. Am J Sports Med 39:2566–2574

    Article  Google Scholar 

  • Van Osch GJ, Marijnissen WJ, van der Veen SW, Verwoerd-Verhoef HL (2001a) The potency of culture-expanded nasal septum chondrocytes for tissue engineering of cartilage. Am J Rhinol 15:187–192

    Article  Google Scholar 

  • Van Osch GJ, van der Veen SW, Verwoerd-Verhoef HL (2001b) In vitro redifferentiation of culture expanded rabbit and human auricular chondrocytes for cartilage reconstruction. Plast Reconstr Surg 107:433–440

    Article  Google Scholar 

  • Van Osch GJ, Mandl EW, Jahr H, Koevoet W, Nolst-Trenité G, Verhaar JA (2004) Considerations on the use of ear chondrocytes as donor chondrocytes for cartilage tissue engineering. Biorheology 41:411–421

    Google Scholar 

  • Verdonk PCM, Forsyth RG, Wang J, Almqvist KF, Verdonk R, Veys EM, Verbruggen G (2005) Characterisation of human knee meniscus cell phenotype. Osteoarthr Cartil 13(7):548–560

    Article  Google Scholar 

  • Vinatier C, Magne D, Moreau A, Gauthier O, Malard O, Vignes-Colombeix C, Daculsi G, Weiss P, Guicheux J (2007) Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel. J Biomed Mater Res A 80:66–74

    Article  Google Scholar 

  • Visna P, Pasa L, Cizmár I, Hart R, Hoch J (2004) Treatment of deep cartilage defects of the knee using autologous chondrograft transplantation and by abrasive techniques--a randomized controlled study. Acta Chir Belg 104:709–714

    Article  Google Scholar 

  • Wakitani S, Nawata M, Tensho K, Okabe T, Machida H, Ohgushi H (2007) Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J Tissue Eng Regen Med 1:74–79

    Article  Google Scholar 

  • Wei Niu, Weimin Guo, Shufeng Han, Yun Zhu, Shuyun Liu, Quanyi Guo, (2016) Cell-Based Strategies for Meniscus Tissue Engineering. Stem Cells International 2016:1–10

    Google Scholar 

  • Weiss S, Hennig T, Bock R, Steck E, Richter W (2010) Impact of growth factors and PTHrP on early and late chondrogenic differentiation of human mesenchymal stem cells. J Cell Physiol 223:84–93

    Google Scholar 

  • Williams R, Khan IM, Richardson K, Nelson L, McCarthy HE, Analbelsi T, Singhrao SK, Dowthwaite GP, Jones RE, Baird DM, Lewis H, Roberts S, Shaw HM, Dudhia J, Fairclough J, Briggs T, Archer CW (2010) Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PLoS One 5:e13246

    Article  Google Scholar 

  • Wolf F, Haug M, Farhadi J, Candrian C, Martin I, Barbero A (2008) A low percentage of autologous serum can replace bovine serum to engineer human nasal cartilage. Eur Cell Mater 15:1–10.:1-10

    Article  Google Scholar 

  • Wu L, Leijten JC, Georgi N, Post JN, van Blitterswijk CA, Karperien M (2011) Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng Part A 17:1425–1436

    Article  Google Scholar 

  • Xing Zhao, Nathaniel S. Hwang, David A. Bichara, Daniel B. Saris, Jos Malda, Joseph P. Vacanti, Irina Pomerantseva, Cathryn A. Sundback, Robert Langer, Daniel G. Anderson, Mark A. Randolph, (2017) Chondrogenesis by bone marrow-derived mesenchymal stem cells grown in chondrocyte-conditioned medium for auricular reconstruction. Journal of Tissue Engineering and Regenerative Medicine 11 (10):2763–2773

    Google Scholar 

  • Xu JW, Nazzal J, Peretti GM, Kirchhoff CH, Randolph MA, Yaremchuk MJ (2001) Tissue engineered cartilage composite with expanded polytetrafluoroethylene membrane. Ann Plast Surg 46:527–532

    Article  Google Scholar 

  • Xu JW, Zaporojan V, Peretti GM, Roses RE, Morse KB, Roy AK, Mesa JM, Randolph MA, Bonassar LJ, Yaremchuk MJ (2004) Injectable tissue-engineered cartilage with different chondrocyte sources. Plast Reconstr Surg 113:1361–1371

    Article  Google Scholar 

  • Xu Y (2015) Tissue engineering of human nasal alar cartilage precisely by using three-dimensional printing

    Google Scholar 

  • Xu L, Peng H, Wu D, Hu K, Goldring MB, Olsen BR, Li Y (2005) Activation of the discoidin domain receptor 2 induces expression of matrix metalloproteinase 13 associated with osteoarthritis in mice. J Biol Chem 280(1):548–555

    Article  Google Scholar 

  • Yanaga H, Imai K, Fujimoto T, Yanaga K (2009) Generating ears from cultured autologous auricular chondrocytes by using two-stage implantation in treatment of microtia. Plast Reconstr Surg 124:817–825

    Article  Google Scholar 

  • Yilin Cao, Joseph P. Vacanti, Keith T. Paige, Joseph Upton, Charles A. Vacanti, Transplantation of Chondrocytes Utilizing a Polymer-Cell Construct to Produce Tissue-Engineered Cartilage in the Shape of a Human Ear. Plastic and Reconstructive Surgery 100 (2):297–302

    Google Scholar 

  • Zamperone A, Pietronave S, Merlin S, Colangelo D, Ranaldo G, Medico E, Di Scipio F, Berta GN, Follenzi A, Prat M (2013) Isolation and characterization of a spontaneously immortalized multipotent mesenchymal cell line derived from mouse subcutaneous adipose tissue. Stem Cells Dev 22:2873–2884

    Article  Google Scholar 

  • Zeifang F, Oberle D, Nierhoff C, Richter W, Moradi B, Schmitt H (2010) Autologous chondrocyte implantation using the original periosteum-cover technique versus matrix-associated autologous chondrocyte implantation: a randomized clinical trial. Am J Sports Med 38:924–933

    Article  Google Scholar 

  • Zhang Q, Cigan AD, Marrero L, Lopreore C, Liu S, Ge D, Savoie FH, You Z (2011) Expression of doublecortin reveals articular chondrocyte lineage in mouse embryonic limbs. Genesis 49:75–82

    Article  Google Scholar 

  • Zhou L, Pomerantseva I, Bassett EK, Bowley CM, Zhao X, Bichara DA, Kulig KM, Vacanti JP, Randolph MA, Sundback CA (2011) Engineering ear constructs with a composite scaffold to maintain dimensions. Tissue Eng Part A 17:1573–1581

    Article  Google Scholar 

  • Zhu F, Wang P, Lee NH, Goldring MB, Konstantopoulos K (2010) Prolonged application of high fluid shear to chondrocytes recapitulates gene expression profiles associated with osteoarthritis. PLoS One 5(12):e15174

    Article  Google Scholar 

  • Zscharnack M, Hepp P, Richter R, Aigner T, Schulz R, Somerson J, Josten C, Bader A, Marquass B (2010) Repair of chronic osteochondral defects using predifferentiated mesenchymal stem cells in an ovine model. Am J Sports Med 38:1857–1869

    Article  Google Scholar 

  • Zwicky R, Muntener K, Goldring MB, Baici A (2002) Cathepsin B expression and down-regulation by gene silencing and antisense DNA in human chondrocytes. Biochem J 367:209–217

    Article  Google Scholar 

Download references

Acknowledgments

Andrea Barbero is supported by the Swiss National Science Foundation (SNSF Project No. 310030_149614) and the Deutsche Arthrose-Hilfe (P245-A546-Martin-EP1-mumm1-knie-op-III-2011-15).

Diego Correa is in gratitude with the Case Center for Multimodal Evaluation of Engineered Cartilage (CCMEEC) through the NIH grant P41-EB021911, the Soffer Family Foundation, and the Diabetes Research Institute Foundation (DRIF).

Tim Hardingham in the Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, acknowledges support from the Wellcome Trust (grant number 088785/Z/09/Z).

Roberto Narcisi is supported by a VENI grant by STW (nr. 13659).

Mark Randolph would like to acknowledge Irina Pomerantseva, M.D., Ph.D., and Cathryn A. Sundback, Sc.D., from the Laboratory for Tissue Engineering and Organ Fabrication, Massachusetts General Hospital, for their contributions on the biology of auricular chondrocytes for generating ear cartilage.

Sandra van den Bosch is acknowledged for help with editing of the references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerjo J. V. M. van Osch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

van Osch, G.J. et al. (2018). Cells for Cartilage Regeneration. In: Gimble, J., Marolt, D., Oreffo, R., Redl, H., Wolbank, S. (eds) Cell Engineering and Regeneration. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-37076-7_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-37076-7_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-37076-7

  • Online ISBN: 978-3-319-37076-7

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics