Skip to main content

Impedance Characteristics of Hybrid Organometal Halide Perovskite Solar Cells

  • Chapter
  • First Online:
Organic-Inorganic Halide Perovskite Photovoltaics

Abstract

This chapter describes the application of impedance spectroscopy and an array of related experimental techniques used to understand the operation principles of lead halide perovskite solar cells and their related materials. The main topic of the chapter is the identification of capacitances and their origin, which is related to ion accumulation, electron accumulation, or a combination of both. In addition to impedance spectroscopy, we examine a number of charging or time transient techniques that are performed by a voltage step or continuous cycling, including capacitance–voltage characterization and Kelvin probe force microscopy. The interpretation is carried out using several experimental modifications such as application of different contacts, sample thickness, and temperature. The relationship of hysteresis to capacitance is also addressed, as well as the degradation at contacts by ionic accumulation and reaction.

Organometal Halide Perovskite Photovoltaics: Fundamentals and Device Arquitectures.

—Editors Nam-Gyu Park, Michael Grätzel and Tsutomu Miyasaka. Springer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almora, O., Guerrero, A., Garcia-Belmonte, G.: Ionic charging by local imbalance at interfaces in hybrid lead halide perovskites. Appl. Phys. Lett. 108, 043903 (2016)

    Google Scholar 

  2. Almora, O., Zarazua, I., Mas-Marza, E., Mora-Sero, I., Bisquert, J., Garcia-Belmonte, G.: Capacitive dark currents, hysteresis, and electrode polarization in lead halide perovskite solar cells. J. Phys. Chem. Lett. 6, 1645–1652 (2015)

    Article  Google Scholar 

  3. Azpiroz, J.M., Mosconi, E., Bisquert, J., De Angelis, F.: Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015)

    Article  Google Scholar 

  4. Bag, M., Renna, L.A., Adhikari, R.Y., Karak, S., Liu, F., Lahti, P.M., Russell, T.P., Tuominen, M.T., Venkataraman, D.: Kinetics of ion transport in perovskite active layers and its implications for active layer stability. J. Am. Chem. Soc. 137, 13130–13137 (2015)

    Article  Google Scholar 

  5. Baumann, A., Tvingstedt, K., Heiber, M.C., Vath, S., Momblona, C., Bolink, H.J., Dyakonov, V.: Persistent photovoltage in methylammonium lead iodide perovskite solar cells. APL Mater. 2, 081501 (2014)

    Article  Google Scholar 

  6. Bazant, M.Z., Thornton, K., Ajdari, A.: Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E 70, 021506 (2004)

    Article  Google Scholar 

  7. Beaumont, J.H., Jacobs, P.W.M.: Polarization in potassium chloride crystals. J. Phys. Chem. Solids 28, 657 (1967)

    Article  Google Scholar 

  8. Bergmann, V.W., Weber, S.A.L., Javier Ramos, F., Nazeeruddin, M.K., Gratzel, M., Li, D., Domanski, A.L., Lieberwirth, I., Ahmad, S., Berger, R.: Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nat. Commun. 5 (2014)

    Google Scholar 

  9. Bertoluzzi, L., Sanchez, R.S., Liu, L., Lee, J.-W., Mas-Marza, E., Han, H., Park, N.-G., Mora-Sero, I., Bisquert, J.: Cooperative kinetics of depolarization in CH3NH3PbI3 perovskite solar cells. Energy Environ. Sci. 8, 910–915 (2015)

    Article  Google Scholar 

  10. Bisquert, J., Fabregat-Santiago, F.: Dye-sensitized solar cells. Kalyanasundaram, K. (ed.). CRC Press, Boca Raton (2010)

    Google Scholar 

  11. Bisquert, J., Garcia-Belmonte, G., Mora-Sero, I.: Characterization of capacitance, transport and recombination parameters in hybrid perovskite and organic solar cells. In: Como, E.d., Angelis, F.D., Snaith, H., Walker, A. (eds.) Unconventional Thin Film Photovoltaics: Organic and Perovskite Solar Cells, RSC Energy and Environment Series (2016)

    Google Scholar 

  12. Brivio, F., Butler, K.T., Walsh, A., van Schilfgaarde, M.: Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Phys. Rev. B 89, 155204 (2014)

    Article  Google Scholar 

  13. Brivio, F., Walker, A.B., Walsh, A.: Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater. 1, 042113 (2013)

    Article  Google Scholar 

  14. Carrillo, J., Guerrero, A., Rahimnejad, S., Almora, O., Zarazua, I., Mas-Marza, E., Bisquert, J., Garcia-Belmonte, G.: Ionic reactivity at contacts and aging of methylammonium lead triiodide perovskite solar cell. Adv. Energy Mater. 6, 1502246 (2016)

    Google Scholar 

  15. Chen, B., Yang, M., Zheng, X., Wu, C., Li, W., Yan, Y., Bisquert, J., Garcia-Belmonte, G., Zhu, K., Priya, S.: Impact of capacitive effect and ion migration on the hysteretic behavior of perovskite solar cells. J. Phys. Chem. Lett. 6, 4693–4700 (2015)

    Article  Google Scholar 

  16. Chih-Tang, S., Noyce, R.N., Shockley, W.: Carrier generation and recombination in P-N junctions and P-N junction characteristics. Proc. IRE 45, 1228–1243 (1957)

    Article  Google Scholar 

  17. Clifford, J.N., Martinez-Ferrero, E., Palomares, E.: Dye mediated charge recombination dynamics in nanocrystalline TiO2 dye sensitized solar cells. J. Mater. Chem. 22, 12415–12422 (2012)

    Article  Google Scholar 

  18. Coll, M., Gomez, A., Mas-Marza, E., Almora, O., Garcia-Belmonte, G., Campoy-Quiles, M., Bisquert, J.: Polarization switching and light-enhanced piezoelectricity in lead halide perovskites. J. Phys. Chem. Lett. 6, 1408–1413 (2015)

    Google Scholar 

  19. Conings, B., Drijkoningen, J., Gauquelin, N., Babayigit, A., D’Haen, J., D’Olieslaeger, L., Ethirajan, A., Verbeeck, J., Manca, J., Mosconi, E., De Angelis, F., Boyen, H.-G.: Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1500477 (2015)

    Article  Google Scholar 

  20. Eames, C., Frost, J.M., Barnes, P.R.F., O/’Regan, B.C., Walsh, A., Islam, M.S.: Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6 (2015)

    Google Scholar 

  21. Etxebarria, I., Guerrero, A., Albero, J., Garcia-Belmonte, G., Palomares, E., Pacios, R.: Inverted vs standard PTB7:PC70BM organic photovoltaic devices. The benefit of highly selective and extracting contacts in device performance. Org. Electron. 15, 2756–2762 (2014)

    Article  Google Scholar 

  22. Fabregat-Santiago, F., Garcia-Belmonte, G., Mora-Seró, I., Bisquert, J.: Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys. Chem. Chem. Phys. 13, 9083–9118 (2011)

    Article  Google Scholar 

  23. Fabregat-Santiago, F., Mora-Seró, I., Garcia-Belmonte, G., Bisquert, J.: Cyclic voltammetry studies of nanoporous semiconductor electrodes. Models and application to nanocrystalline TiO2 in aqueous electrolyte. J. Phys. Chem. B 107, 758–769 (2003)

    Article  Google Scholar 

  24. Fan, Z., Xiao, J., Sun, K., Chen, L., Hu, Y., Ouyang, J., Ong, K.P., Zeng, K., Wang, J.: Ferroelectricity of CH3NH3PbI3 perovskite. J. Phys. Chem. Lett. 6, 1155–1161 (2015)

    Article  Google Scholar 

  25. Filippetti, A., Delugas, P., Saba, M.I., Mattoni, A.: Entropy-suppressed ferroelectricity in hybrid lead-iodide perovskites. J. Phys. Chem. Lett. 6, 4909–4915 (2015)

    Article  Google Scholar 

  26. Frost, J.M., Butler, K.T., Walsh, A.: Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells. APL Mater. 2 (2014)

    Google Scholar 

  27. Gottesman, R., Zaban, A.: Perovskites for photovoltaics in the spotlight: photoinduced physical changes and their implications. Acc. Chem. Res. (2016)

    Google Scholar 

  28. Guerrero, A., Dörling, B., Ripolles-Sanchis, T., Aghamohammadi, M., Barrena, E., Campoy-Quiles, M., Garcia-Belmonte, G.: Interplay between fullerene surface coverage and contact selectivity of cathode interfaces in organic solar cells. ACS Nano 7, 4637–4646 (2013)

    Article  Google Scholar 

  29. Guerrero, A., Juarez-Perez, E.J., Bisquert, J., Mora-Sero, I., Garcia-Belmonte, G.: Electrical field profile and doping in planar lead halide perovskite solar cells. Appl. Phys. Lett. 105, 133902 (2014)

    Article  Google Scholar 

  30. Guerrero, A., Marchesi, L.F., Boix, P.P., Ruiz-Raga, S., Ripolles-Sanchis, T., Garcia-Belmonte, G., Bisquert, J.: How the charge-neutrality level of interface states controls energy level alignment in cathode contacts of organic bulk-heterojunction solar cells. ACS Nano 6, 3453–3460 (2012)

    Article  Google Scholar 

  31. Guerrero, A., You, J., Aranda, C., Kang, Y.S., Garcia-Belmonte, G., Zhou, H., Bisquert, J., Yang, Y.: Interfacial degradation of planar lead halide perovskite solar cells. ACS Nano 10, 218–224 (2016)

    Google Scholar 

  32. Hebb, M.H.: Electrical conductivity of silver sulfide. J. Chem. Phys. 20, 185 (1952)

    Article  Google Scholar 

  33. Jiang, C.-S., Yang, M., Zhou, Y., To, B., Nanayakkara, S.U., Luther, J.M., Zhou, W., Berry, J.J., van de Lagemaat, J., Padture, N.P., Zhu, K., Al-Jassim, M.M.: Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential. Nat. Commun. 6 (2015)

    Google Scholar 

  34. Juarez-Perez, E.J., Sanchez, R.S., Badia, L., Garcia-Belmonte, G., Gonzalez-Pedro, V., Kang, Y.S., Mora-Sero, I., Bisquert, J.: Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 2390–2394 (2014)

    Article  Google Scholar 

  35. Kato, Y., Ono, L.K., Lee, M.V., Wang, S., Raga, S.R., Qi, Y.: Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interfaces 2, 1500195 (2015)

    Article  Google Scholar 

  36. Kim, C., Tomozawa, M.: Electrode polarization of glasses. J. Am. Chem. Soc. 59, 127–130 (1976)

    Google Scholar 

  37. Kim, H.-S., Jang, I.-H., Ahn, N., Choi, M., Guerrero, A., Bisquert, J., Park, N.-G.: Control of I-V hysteresis in CH3NH3PbI3 perovskite solar cell. J. Phys. Chem. Lett. 6, 4633–4639 (2015)

    Article  Google Scholar 

  38. Kim, H.-S., Kim, S.K., Kim, B.J., Shin, K.-S., Gupta, M.K., Jung, H.S., Kim, S.-W., Park, N.-G.: Ferroelectric polarization in CH3NH3PbI3 perovskite. J. Phys. Chem. Lett. 6, 1729–1735 (2015)

    Article  Google Scholar 

  39. Kim, H.-S., Park, N.-G.: Parameters affecting I-V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer. J. Phys. Chem. Lett. 5, 2927–2934 (2014)

    Article  Google Scholar 

  40. Kim, J., Lee, S.-H., Lee, J.H., Hong, K.-H.: The Role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5, 1312–1317 (2014)

    Article  Google Scholar 

  41. Kirchartz, T., Bisquert, J., Mora-Sero, I., Garcia-Belmonte, G.: Classification of solar cells according to mechanisms of charge separation and charge collection. Phys. Chem. Chem. Phys. 17, 4007–4014 (2015)

    Article  Google Scholar 

  42. Kutes, Y., Ye, L., Zhou, Y., Pang, S., Huey, B.D., Padture, N.P.: Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films. J. Phys. Chem. Lett. 5, 3335–3339 (2014)

    Article  Google Scholar 

  43. Lee, D., Baek, S.H., Kim, T.H., Yoon, J.G., Folkman, C.M., Eom, C.B., Noh, T.W.: Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects. Phys. Rev. B 84, 125305 (2011)

    Article  Google Scholar 

  44. Lee, J.-W., Lee, T.-Y., Yoo, P.J., Gratzel, M., Mhaisalkar, S., Park, N.-G.: Rutile TiO2-based perovskite solar cells. J. Mater. Chem. A 2, 9251–9259 (2014)

    Article  Google Scholar 

  45. Leguy, A.M.A., Frost, J.M., McMahon, A.P., Sakai, V.G., Kockelmann, W., Law, C., Li, X., Foglia, F., Walsh, A., O/’Regan, B.C., Nelson, J., Cabral, J.T., Barnes, P.R.F.: The dynamics of methylammonium ions in hybrid organic-inorganic perovskite solar cells. Nat. Commun. 6 (2015)

    Google Scholar 

  46. Li, L., Wang, F., Wu, X., Yu, H., Zhou, S., Zhao, N.: Carrier-activated polarization in organometal halide perovskites. J. Phys. Chem. C (2016)

    Google Scholar 

  47. Listorti, A., Juarez-Perez, E.J., Frontera, C., Roiati, V., Garcia-Andrade, L., Colella, S., Rizzo, A., Ortiz, P., Mora-Sero, I.: Effect of mesostructured layer upon crystalline properties and device performance on perovskite solar cells. J. Phys. Chem. Lett. 6, 1628–1637 (2015)

    Article  Google Scholar 

  48. Lunkenheimer, P., Bobnar, V., Pronin, A.V., Ritus, A.I., Volkov, A.A., Loidl, A.: Origin of apparent colossal dielectric constants. Phys. Rev. B 66, 052105 (2002)

    Article  Google Scholar 

  49. Mariappan, C.R., Heins, T.P., Roling, B.: Electrode polarization in glassy electrolytes: large interfacial capacitance values and indication for pseudocapacitive charge storage. Solid State Ionics 181, 859–863 (2010)

    Article  Google Scholar 

  50. Marin-Beloqui, J.M., Lanzetta, L., Palomares, E.: Decreasing charge losses in perovskite solar cells through mp-TiO2/MAPI interface engineering. Chem. Mater. 28, 207–213 (2016)

    Article  Google Scholar 

  51. Masaki, M., Hattori, M., Hotta, A., Suzuki, I.: Dielectric studies on CH3NH3PbX3 (X = Cl or Br) single crystals. J. Phys. Soc. Jpn. 66, 1508–1511 (1997)

    Article  Google Scholar 

  52. Mattoni, A., Filippetti, A., Saba, M.I., Delugas, P.: Methylammonium rotational dynamics in lead halide perovskite by classical molecular dynamics: the role of temperature. J. Phys. Chem. C 119, 17421–17428 (2015)

    Article  Google Scholar 

  53. Mönch, W.: Semiconductor Surfaces and Interfaces. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  54. Mosconi, E., Quarti, C., Ivanovska, T., Ruani, G., De Angelis, F.: Structural and electronic properties of organo-halide lead perovskites: a combined IR-spectroscopy and ab initio molecular dynamics investigation. Phys. Chem. Chem. Phys. 16, 16137–16144 (2014)

    Article  Google Scholar 

  55. Nagaoka, H., Ma, F., deQuilettes, D.W., Vorpahl, S.M., Glaz, M.S., Colbert, A.E., Ziffer, M.E., Ginger, D.S.: Zr incorporation into TiO2 electrodes reduces hysteresis and improves performance in hybrid perovskite solar cells while increasing carrier lifetimes. J. Phys. Chem. Lett. 6, 669–675 (2015)

    Google Scholar 

  56. O’Regan, B.C., Barnes, P.R.F., Li, X., Law, C., Palomares, E., Marin-Beloqui, J.M.: Optoelectronic studies of methylammonium lead iodide perovskite solar cells with mesoporous TiO2: separation of electronic and chemical charge storage, understanding two recombination lifetimes, and the evolution of band offsets during J-V hysteresis. J. Am. Chem. Soc. 137, 5087–5099 (2015)

    Article  Google Scholar 

  57. Oga, H., Saeki, A., Ogomi, Y., Hayase, S., Seki, S.: Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps. J. Am. Chem. Soc. 136, 13818–13825 (2014)

    Article  Google Scholar 

  58. Onoda-Yamamuro, N., Matsuo, T., Suga, H.: Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (II)†. J. Phys. Chem. Solids 51, 1383–1395 (1990)

    Article  Google Scholar 

  59. Onoda-Yamamuro, N., Matsuo, T., Suga, H.: Dielectric study of CH3NH3PBX3 (X = CL, BR, I). J. Phys. Chem. Solids 53, 935–939 (1992)

    Article  Google Scholar 

  60. Pockett, A., Eperon, G.E., Peltola, T., Snaith, H.J., Walker, A.B., Peter, L.M., Cameron, P.J.: Characterization of planar lead halide perovskite solar cells by impedance spectroscopy, open circuit photovoltage decay and intensity-modulated photovoltage/photocurrent spectroscopy. J. Phys. Chem. C 119, 3456–3465 (2015)

    Article  Google Scholar 

  61. Poglitsch, A., Weber, D.: Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter wave spectroscopy. J. Chem. Phys. 87, 6373–6378 (1987)

    Article  Google Scholar 

  62. Qin, C., Matsushima, T., Fujihara, T., Potscavage, W.J., Adachi, C.: Degradation mechanisms of solution-processed planar perovskite solar cells: thermally stimulated current measurement for analysis of carrier traps. Adv. Mater. 28, 466–471 (2016)

    Article  Google Scholar 

  63. Roiati, V., Colella, S., Lerario, G., De Marco, L., Rizzo, A., Listorti, A., Gigli, G.: Investigating charge dynamics in halide perovskite-sensitized mesostructured solar cells. Energy Environ. Sci. 7, 1889–1894 (2014)

    Article  Google Scholar 

  64. Sanchez, R.S., Gonzalez-Pedro, V., Lee, J.-W., Park, N.-G., Kang, Y.S., Mora-Sero, I., Bisquert, J.: Slow dynamic processes in lead halide perovskite solar cells. Characteristic times and hysteresis. J. Phys. Chem. Lett. 5, 2357–2363 (2014)

    Article  Google Scholar 

  65. Sepalage, G.A., Meyer, S., Pascoe, A., Scully, A.D., Huang, F., Bach, U., Cheng, Y.-B., Spiccia, L.: Copper(I) iodide as hole-conductor in planar perovskite solar cells: probing the origin of J-V hysteresis. Adv. Funct. Mater. 25, 5650–5661 (2015)

    Article  Google Scholar 

  66. Shi, D., Adinolfi, V., Comin, R., Yuan, M., Alarousu, E., Buin, A., Chen, Y., Hoogland, S., Rothenberger, A., Katsiev, K., Losovyj, Y., Zhang, X., Dowben, P.A., Mohammed, O.F., Sargent, E.H., Bakr, O.M.: Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015)

    Article  Google Scholar 

  67. Stranks, S.D., Burlakov, V.M., Leijtens, T., Ball, J.M., Goriely, A., Snaith, H.J.: Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2, 034007 (2014)

    Article  Google Scholar 

  68. Sze, S.M.: Physics of Semiconductor Devizes, 2nd edn. Wiley, New York (1981)

    Google Scholar 

  69. Tomozawa, M., Shin, D.-W.: Charge carrier concentration and mobility of ions in a silica glass. J. Non-Cryst. Solids 241, 140–148 (1998)

    Article  Google Scholar 

  70. Unger, E.L., Hoke, E.T., Bailie, C.D., Nguyen, W.H., Bowring, A.R., Heumuller, T., Christoforo, M.G., McGehee, M.D.: Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 7, 3690–3698 (2014)

    Article  Google Scholar 

  71. Wang, Q., Shao, Y., Xie, H., Lyu, L., Liu, X., Gao, Y., Huang, J.: Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl. Phys. Lett. 105, 163508 (2014)

    Article  Google Scholar 

  72. Wetzelaer, G.-J.A.H., Scheepers, M., Sempere, A.M., Momblona, C., Ávila, J., Bolink, H.J.: Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells. Adv. Mater. 27, 1837–1841 (2015)

    Article  Google Scholar 

  73. Wu, X., Yu, H., Li, L., Wang, F., Xu, H., Zhao, N.: Composition-dependent light-induced dipole moment change in organometal halide perovskites. J. Phys. Chem. Lett. 119, 1253–1259 (2014)

    Article  Google Scholar 

  74. Xiao, Z., Yuan, Y., Shao, Y., Wang, Q., Dong, Q., Bi, C., Sharma, P., Gruverman, A., Huang, J.: Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2015)

    Article  Google Scholar 

  75. Yang, T.-Y., Gregori, G., Pellet, N., Grätzel, M., Maier, J.: The significance of ion conduction in a hybrid organic–inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. Int. Ed. 54, 7905–7910 (2015)

    Article  Google Scholar 

  76. You, J., Meng, L., Song, T.-B., Guo, T.-F., Yang, Y.M., Chang, W.-H., Hong, Z., Chen, H., Zhou, H., Chen, Q., Liu, Y., De Marco, N., Yang, Y.: Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75–81 (2016)

    Article  Google Scholar 

  77. Zaban, A., Greenshtein, M., Bisquert, J.: Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. ChemPhysChem 4, 859–864 (2003)

    Article  Google Scholar 

  78. Zarazua, I., Bisquert, J., Garcia-Belmonte, G.: Light-induced space-charge accumulation zone as photovoltaic mechanism in perovskite solar cells. J. Phys. Chem. Lett. 7 (2016)

    Google Scholar 

  79. Zhu, X.Y., Podzorov, V.: Charge carriers in hybrid organic-inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 6, 4758–4761 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Bisquert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bisquert, J., Garcia-Belmonte, G., Guerrero, A. (2016). Impedance Characteristics of Hybrid Organometal Halide Perovskite Solar Cells. In: Park, NG., Grätzel, M., Miyasaka, T. (eds) Organic-Inorganic Halide Perovskite Photovoltaics. Springer, Cham. https://doi.org/10.1007/978-3-319-35114-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-35114-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-35112-4

  • Online ISBN: 978-3-319-35114-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics