Skip to main content

Some Complete and Intermediate Polynomials in Algebraic Complexity Theory

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9691))

Included in the following conference series:

Abstract

We provide a list of new natural \(\mathsf {VNP}\)-Intermediate polynomial families, based on basic (combinatorial) \(\mathsf {NP}\)-Complete problems that are complete under parsimonious reductions. Over finite fields, these families are in \(\mathsf {VNP}\), and under the plausible hypothesis \(\mathsf {Mod}_p\mathsf {P}\not \subseteq \mathsf {P/poly}\), are neither \(\mathsf {VNP}\)-hard (even under oracle-circuit reductions) nor in \(\mathsf {VP}\). Prior to this, only the Cut Enumerator polynomial was known to be \(\mathsf {VNP}\)-intermediate, as shown by Bürgisser in 2000.

We next show that over rationals and reals, two of our intermediate polynomials, based on satisfiability and Hamiltonian cycle, are not monotone affine polynomial-size projections of the permanent. This augments recent results along this line due to Grochow.

Finally, we describe a (somewhat natural) polynomial defined independent of a computation model, and show that it is \(\mathsf {VP}\)-complete under polynomial-size projections. This complements a recent result of Durand et al. (2014) which established \(\mathsf {VP}\)-completeness of a related polynomial but under constant-depth oracle circuit reductions. Both polynomials are based on graph homomorphisms. A simple restriction yields a family similarly complete for \(\mathsf {VBP}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alon, N., Boppana, R.B.: The monotone circuit complexity of Boolean functions. Combinatorica 7(1), 1–22 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avis, D., Tiwary, H.R.: On the extension complexity of combinatorial polytopes. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 57–68. Springer, Heidelberg (2013)

    Google Scholar 

  3. Bürgisser, P.: Completeness and Reduction in Algebraic Complexity Theory. Algorithms and Computation in Mathematics, vol. 7. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  4. Bürgisser, P.: On the structure of Valiant’s complexity classes. Discrete Math. Theor. Comput. Sci. 3(3), 73–94 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Bürgisser, P.: Cook’s versus Valiant’s hypothesis. Theor. Comput. Sci. 235(1), 71–88 (2000)

    Article  MATH  Google Scholar 

  6. Capelli, F., Durand, A., Mengel, S.: The arithmetic complexity of tensor contractions. In: Symposium on Theoretical Aspects of Computer Science STACS. LIPIcs, vol. 20, pp. 365–376 (2013)

    Google Scholar 

  7. Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Switzerland (2015)

    Book  MATH  Google Scholar 

  8. de Rugy-Altherre, N.: A dichotomy theorem for homomorphism polynomials. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 308–322. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Díaz, J., Serna, M.J., Thilikos, D.M.: Counting h-colorings of partial k-trees. Theor. Comput. Sci. 281(1–2), 291–309 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Durand, A., Mahajan, M., Malod, G., de Rugy-Altherre, N., Saurabh, N.: Homomorphism polynomials complete for VP. In: 34th Foundation of Software Technology and Theoretical Computer Science Conference, FSTTCS, pp. 493–504 (2014)

    Google Scholar 

  11. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17(3), 449–467 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., Wolf, R.D.: Exponential lower bounds for polytopes in combinatorial optimization. J. ACM 62(2), 17 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  14. Grochow, J.A.: Monotone projection lower bounds from extended formulation lower bounds. [cs.CC] (2015). arXiv:1510.08417

  15. Hell, P., Nešetřil, J.: Graphs And Homomorphisms. Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  16. Jerrum, M., Snir, M.: Some exact complexity results for straight-line computations over semirings. J. ACM 29(3), 874–897 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jukna, S.: Why is Hamilton cycle so different from permanent? (2014). http://cstheory.stackexchange.com/questions/27496/why-is-hamiltonian-cycle-so-different-from-permanent

  18. Karp, R.M., Lipton, R.: Turing machines that take advice. L’enseignement mathématique 28(2), 191–209 (1982)

    MathSciNet  MATH  Google Scholar 

  19. Ladner, R.E.: On the structure of polynomial time reducibility. J. ACM 22(1), 155–171 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  20. Malod, G., Portier, N.: Characterizing Valiant’s algebraic complexity classes. J. Complex. 24(1), 16–38 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mengel, S.: Characterizing arithmetic circuit classes by constraint satisfaction problems. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 700–711. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Raz, R.: Elusive functions and lower bounds for arithmetic circuits. Theor. Comput. 6, 135–177 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Razborov, A.A.: Lower bounds on the monotone complexity of some Boolean functions. Dokl. Akad. Nauk SSSR 281(4), 798–801 (1985)

    MathSciNet  MATH  Google Scholar 

  24. Razborov, A.A.: Lower bounds on monotone complexity of the logical permanent. Math. Notes Acad. Sci. USSR 37(6), 485–493 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rothvoß, T.: The matching polytope has exponential extension complexity. In: Symposium on Theory of Computing, STOC, pp. 263–272. New York, 31 May–03 June 2014

    Google Scholar 

  26. Simon, J.: On the difference between one and many. In: Salomaa, A., Steinby, M. (eds.) Automata, Languages and Programming. LNCS, vol. 52, pp. 480–491. Springer, Heidelberg (1977)

    Chapter  Google Scholar 

  27. Valiant, L.G.: Completeness classes in algebra. In: Symposium on Theory of Computing STOC, pp. 249–261 (1979)

    Google Scholar 

  28. Valiant, L.G., Skyum, S., Berkowitz, S., Rackoff, C.: Fast parallel computation of polynomials using few processors. SIAM J. Comput. 12(4), 641–644 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Saurabh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Mahajan, M., Saurabh, N. (2016). Some Complete and Intermediate Polynomials in Algebraic Complexity Theory. In: Kulikov, A., Woeginger, G. (eds) Computer Science – Theory and Applications. CSR 2016. Lecture Notes in Computer Science(), vol 9691. Springer, Cham. https://doi.org/10.1007/978-3-319-34171-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34171-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34170-5

  • Online ISBN: 978-3-319-34171-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics